コード例 #1
0
ファイル: TextCnn.py プロジェクト: Peterzwb/TextCNN
    def run(cls, action='predict', question='', question_list=None):

        log.info('action : %s' % action)

        if action == 'train':
            cls.train(cls)
        elif action == 'test':
            cls.test(cls)
        elif action == 'doc':
            return cls.predict_doc(cls, question_list)
        elif action == 'softmax':
            return cls.predict_doc_softmax(cls, question_list)
        else:
            return cls.predict(cls, question=question)
コード例 #2
0
 def pandas_read_sql(cls, sql):
     usePool=cls._db_inst_use_pool
     log.info("sql=" + sql)
     if usePool:
         return pd.read_sql(sql, con=cls.get_db_inst())
     else:
         conn = cls.get_db_inst()
         con = conn.connect()
         try:
             with con:
                 return pd.read_sql(sql, con=con)
         except Exception as e:
             log.error("Read from Database fialed: %s"%e)
             traceback.print_exc()
         finally:
             conn.dispose()
コード例 #3
0
ファイル: Application.py プロジェクト: Peterzwb/TextCNN
def initData():

    que_label = None
    que_nolabel = None

    sql = 'select * from gx_regular_label'
    que_label = SqlalchemyUtil.pandas_read_sql(sql=sql)

    log.info('数据已经更新')

    sql = 'select * from gx_regular_nolabel'
    que_nolabel = SqlalchemyUtil.pandas_read_sql(sql=sql)

    Application.all_data = {
        'gx_regular_label': que_label,
        'gx_regular_nolabel': que_nolabel
    }
コード例 #4
0
ファイル: Application.py プロジェクト: Peterzwb/TextCNN
def tasker():

    # log.debug('开启互斥锁')

    mutex.acquire()
    try:
        log.info('Application更新时间:%s' % Application.lastTime)
        if Application.lastTime != None:
            if int(time.time()) - int(
                    Application.lastTime) < Application.updataTime:
                log.info('---无需更新数据---')
                return
        initData()
        Application.lastTime = time.time()
        Application.init_data = True
        Application.init_model = True
    finally:
        mutex.release()
        log.debug('释放互斥锁')
コード例 #5
0
    def LoadConfig(self, conf_path):
        log.info('配置文件路径', os.path.abspath(conf_path))
        if self.config_path != conf_path:
            self.config_path = conf_path

        self.cf.read(conf_path)

        # DB
        db_sec = self.cf['db']
        self.db_type = db_sec.get("type", "mysql")
        self.db_driver = db_sec.get("driver", "pymysql")
        self.db_host = db_sec.get('host')
        self.db_port = db_sec.get('port', '3306')
        self.db_user = db_sec.get('user')
        self.db_passwd = db_sec.get('passwd')
        self.db_name = db_sec.get('dbname', '')
        self.db_charset = db_sec.get('charset', 'utf8')
        self.db_insertInterval = db_sec.get('insertInterval')
        self.db_verStartTime = db_sec.get('verStartTime')
コード例 #6
0
ファイル: TextCnn.py プロジェクト: Peterzwb/TextCNN
    def train(self):

        Continue = False

        model = TextCnnModel(self.config,
                             keep_prob=self.config.dropout_keep_prob)

        # 配置 Saver
        if not os.path.exists(TextCnnConfig.save_dir):
            os.makedirs(TextCnnConfig.save_dir)

        # 载入训练集与验证集
        start_time = time.time()

        data = dataHelper.process_file(
            Application.all_data,
            vocab_dir=TextCnnConfig.vocab_dir,
            categories_dir=TextCnnConfig.categories_dir,
            max_length=TextCnnConfig.seq_length)

        train_data, val_data = dataHelper.build_train_val(
            data, reset=True)  #全量用True,test是用FALSE

        # 创建session
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())

            if Continue:
                model.saver.restore(sess=sess,
                                    save_path=TextCnnConfig.save_path)
                Continue = False

            print('Training and evaluating...')
            start_time = time.time()
            total_batch = 0  # 总批次
            best_acc_val = 0.0  # 最佳验证集准确率
            last_improved = 0  # 记录上一次提升批次
            require_improvement = 1000  # 如果超过1000轮未提升,提前结束训练
            loss_val = 0.0
            acc_val = 0.0

            flag = False
            for epoch in range(self.config.num_epochs):
                print('Train Epoch:', epoch + 1)
                print(val_data.shape)

                # train_data, val_data = self.reset_train_val(train_data,val_data)

                for batch_x, batch_y in dataHelper.batch_iter(train_data):
                    if total_batch >= 800:
                        model.saver.save(sess=sess,
                                         save_path=TextCnnConfig.save_path)
                        break
                    feed_dict = {
                        model.input_x: batch_x,
                        model.input_y: batch_y
                    }
                    if total_batch % self.config.print_per_batch == 0:
                        # 每多少轮次输出在训练集和验证集上的性能
                        # feed_dict[model.keep_prob] = 1.0
                        loss_train, acc_train = sess.run(
                            [model.loss, model.acc], feed_dict=feed_dict)
                        loss_val, acc_val = self.evaluate(
                            sess, val_data, model)  # todo

                        # if (acc_val + 0.01) > best_acc_val and abs(acc_train-acc_val)<0.02:
                        if acc_val >= best_acc_val:
                            # 保存最好结果
                            best_acc_val = acc_val
                            last_improved = total_batch
                            os.chdir(
                                r"G:\项目3—广西文本分类\GxClassify\Model\TextCnnModel\checkpoints\best_validation"
                            )
                            print(os.getcwd())
                            model.saver.save(sess=sess,
                                             save_path="./best_validation")
                            improved_str = '*'
                        else:
                            improved_str = ''

                        time_dif = self.get_time_dif(start_time)
                        msg = 'Iter: {0:>6}, Train Loss: {1:>6.2}, Train Acc: {2:>7.2%},' \
                              + ' Val Loss: {3:>6.2}, Val Acc: {4:>7.2%}, Time: {5} {6}'
                        print(
                            msg.format(total_batch, loss_train, acc_train,
                                       loss_val, acc_val, time_dif,
                                       improved_str))

                    sess.run(model.optim, feed_dict=feed_dict)  # 运行优化
                    total_batch += 1

                    if total_batch - last_improved > require_improvement:
                        # 验证集正确率长期不提升,提前结束训练
                        log.warning(
                            "No optimization for a long time, auto-stopping..."
                        )
                        flag = True
                        break  # 跳出循环
                if flag:  # 同上
                    break

            # model.saver.save(sess=sess, save_path=TextCnnConfig.save_path)   #最终模型
            log.info('train finish use time :%s' %
                     (self.get_time_dif(start_time)))
コード例 #7
0
ファイル: TextCnn.py プロジェクト: Peterzwb/TextCNN
 def __init__(self):
     log.info('Configuring CNN model...')
コード例 #8
0
ファイル: TextCnn.py プロジェクト: Peterzwb/TextCNN
    def test(self):

        model = TextCnnModel(self.config, keep_prob=1)

        start_time = time.time()

        with open(self.config.test_dir, 'rb') as f:
            test_data = pickle.load(f)

        test_size, _ = test_data.shape

        _, categories = dataHelper.read_category(
            categories_dir=TextCnnConfig.categories_dir)
        sess = tf.Session()
        sess.run(tf.global_variables_initializer())

        model.saver.restore(sess=sess,
                            save_path=TextCnnConfig.save_path)  # 读取保存的模型

        loss_test, acc_test = self.evaluate(sess, test_data, model)
        msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}'
        print(msg.format(loss_test, acc_test))

        # y_pred_cls = np.zeros(shape=test_size, dtype=np.int32)  # 保存预测结果
        y_pred_cls = []
        y_test_cls = None
        for x, y in dataHelper.batch_iter(test_data,
                                          batch_size=test_size):  # 逐批次处理

            feed_dict = {
                model.input_x: x,
            }
            y_pred_cls = sess.run(model.y_pred_cls, feed_dict=feed_dict)
            y_test_cls = np.argmax(y, 1)

        print(y_pred_cls)

        # 评估
        print("Precision, Recall and F1-Score...")
        print(
            metrics.classification_report(y_test_cls,
                                          y_pred_cls,
                                          target_names=list(categories)))

        wc = []
        wct = []
        y_test_cls = y_test_cls.tolist()
        y_pred_cls = y_pred_cls.tolist()

        for i in range(len(y_pred_cls)):
            # wc.append(y_pred_cls[i])
            # wct.append(y_test_cls[i])
            if y_pred_cls[i] - y_test_cls[i] != 0:
                wc.append(y_pred_cls[i])
                wct.append(y_test_cls[i])

        print(wc)
        print(wct)
        print(len(wc))
        # print(dataHelper.category_id([wc],TextCnnConfig.categories_dir))
        # print(dataHelper.category_id([wct], TextCnnConfig.categories_dir))
        # label_id , _ = dataHelper.read_category(TextCnnConfig.categories_dir)
        # print(label_id)
        # test_data = test_data.reset_index()
        # test_data['label_p'] = pandas.Series(np.array(dataHelper.category_id([wc],TextCnnConfig.categories_dir)))
        # test_data['label_T'] = pandas.Series(np.array(dataHelper.category_id([wct], TextCnnConfig.categories_dir)))
        # print(test_data)
        #
        # test_data = test_data.drop('x',1)
        # test_data = test_data.drop('y', 1)
        # print(test_data)
        # SqlalchemyUtil.pandas_to_sql(test_data,table_name='q_label_test')
        time_dif = self.get_time_dif(start_time)
        log.info("Time usage:", time_dif)