def generate(_unit): """""" '''状态集合''' states = {_: _unit for _ in range(self.__state_num)} '''观测概率表示(GMM)''' observations = ['GMM_probability'] '''状态转移矩阵''' A = np.zeros((self.__state_num, self.__state_num)) '''开始状态,为虚状态,只允许向下一个状态转移''' A[0][1] = 1. for j in range(1, self.__state_num - 1): for k in range(j, j + 2): A[j][k] = 0.5 '''创建基元文件夹''' unit_path = PARAMETERS_FILE_PATH + '/%s/%s' % (self.__unit_type, _unit) if not os.path.exists(unit_path): os.mkdir(unit_path) '''''' '''''' '''''' log = Log(self.__unit_type, _unit, console=self.__console) if new_log: log.generate() else: log.append() '''初始化GMM''' gmm = [ Clustering.GMM(self.__vector_size, self.__mix_level, log) for _ in range(self.__state_num - 2) ] '''初始化虚状态评分类''' virtual_gmm_1 = AcousticModel.VirtualState(0.) virtual_gmm_2 = AcousticModel.VirtualState(0.) gmm.insert(0, virtual_gmm_1) gmm.append(virtual_gmm_2) '''生成hmm实例''' lhmm = LHMM(states, observations, log, T=None, A=A, profunc=gmm, pi=None) '''数据结构:{基元:HMM,...}''' self.__unit[_unit] = lhmm
def init_unit(self, unit, new_log=True, fix_code=0): """ 初始化基元,生成基元的复合数据结构 :param unit: 初始化指定基元 :param new_log: 是否删除先前日志 :param fix_code: 关闭参数更新,000=0 001=1 010=2 100=4... :return: """ """""" '''状态集合''' states = {_: unit for _ in range(self.__state_num)} '''状态转移矩阵''' transmat = np.zeros((self.__state_num, self.__state_num)) '''开始状态,为虚状态,只允许向下一个状态转移''' transmat[0][1] = 1. for j in range(1, self.__state_num - 1): transmat[j][j] = 0.5 # 第一个转移概率 transmat[j][j + 1] = 0.5 # 第二个转移概率 '''创建基元文件夹''' unit_path = PARAMETERS_FILE_PATH + '/%s/%s' % (self.__unit_type, unit) log_hmm_path = unit_path + '/HMM' log_gmm_path = [ unit_path + '/GMM_%d' % gmm_id for gmm_id in range(self.__state_num - 2) ] try: os.mkdir(unit_path) except FileExistsError: pass try: os.mkdir(log_hmm_path) except FileExistsError: pass try: for gmm_id in range(self.__state_num - 2): os.mkdir(log_gmm_path[gmm_id]) except FileExistsError: pass '''''' '''''' '''''' log_hmm = Log(self.__unit_type, log_hmm_path, console=self.__console) log_gmm = [ Log(self.__unit_type, path=log_gmm_path[gmm_id], console=self.__console) for gmm_id in range(self.__state_num - 2) ] if new_log: log_hmm.generate() for gmm_id in range(self.__state_num - 2): log_gmm[gmm_id].generate() else: log_hmm.append() for gmm_id in range(self.__state_num - 2): log_gmm[gmm_id].append() '''初始化GMM''' gmm = [] for gmm_id in range(self.__state_num - 2): gmm.append( Clustering.GMM(log_gmm[gmm_id], dimension=self.__vector_size, mix_level=self.__mix_level, gmm_id=gmm_id)) '''初始化虚状态评分类''' virtual_gmm_1 = AcousticModel.VirtualState(1.) virtual_gmm_2 = AcousticModel.VirtualState(0.) gmm.insert(0, virtual_gmm_1) gmm.append(virtual_gmm_2) '''生成hmm实例''' lhmm = LHMM(states, self.__state_num, log_hmm, transmat=transmat, profunc=gmm, fix_code=fix_code) return lhmm