def test_evaluate_gradient(): grid = StructuredGrid() # test by setting the scalar field to the y coordinate vector = grid.evaluate_gradient(grid.barycentre, grid.nodes[:, 1]) assert np.sum(vector - np.array([0, 1, 0])) == 0 # same test but for a bigger grid, making sure scaling for cell is ok grid = StructuredGrid(step_vector=np.array([100, 100, 100])) vector = grid.evaluate_gradient(grid.barycentre, grid.nodes[:, 1]) assert np.sum(vector - np.array([0, 1, 0])) == 0
def test_FDI(): xy = np.array(np.meshgrid(np.linspace(0, 1, 50), np.linspace(0, 1, 50))).T.reshape(-1, 2) xyz = np.hstack([xy, np.zeros((xy.shape[0], 1))]) data = pd.DataFrame(xyz, columns=['X', 'Y', 'Z']) data['val'] = np.sin(data['X']) data['w'] = 1 data['feature_name'] = 'strati' randind = np.arange(0, len(data)) # np.random.shuffle(randind) # # data.loc[randind[:int(50*50*.5)],'val'] = np.nan # np.random.shuffle(randind) # data.loc[randind[:int(50*50*.1)],'val'] = 0 origin = np.array([-0.1, -0.1, -0.1]) maximum = np.array([1.1, 1.1, 1.1]) nsteps = np.array([20, 20, 20]) step_vector = (maximum - origin) / nsteps grid = StructuredGrid(origin=origin, nsteps=nsteps, step_vector=step_vector) interpolator = FDI(grid) interpolator.set_value_constraints(data[['X', 'Y', 'Z', 'val', 'w']].to_numpy()) interpolator._setup_interpolator() interpolator.solve_system() assert np.sum( interpolator.evaluate_value(data[['X', 'Y', 'Z']].to_numpy()) - data[['val']].to_numpy()) / len(data) < 0.5
def test_inequality_FDI_nodes(): try: import osqp except ImportError: print('osqp not installed') return xy = np.array(np.meshgrid(np.linspace(0, 1, 50), np.linspace(0, 1, 50))).T.reshape(-1, 2) xyz = np.hstack([xy, np.zeros((xy.shape[0], 1))]) data = pd.DataFrame(xyz, columns=['X', 'Y', 'Z']) data['val'] = np.sin(data['X']) data['w'] = 1 data['feature_name'] = 'strati' data['l'] = -3 data['u'] = 10 randind = np.arange(0, len(data)) origin = np.array([-0.1, -0.1, -0.1]) maximum = np.array([1.1, 1.1, 1.1]) nsteps = np.array([20, 20, 20]) step_vector = (maximum - origin) / nsteps grid = StructuredGrid(origin=origin, nsteps=nsteps, step_vector=step_vector) interpolator = FDI(grid) interpolator.set_value_constraints(data[['X', 'Y', 'Z', 'val', 'w']].to_numpy()) interpolator.set_inequality_constraints(data[['X', 'Y', 'Z', 'l', 'u']].to_numpy()) interpolator._setup_interpolator() interpolator.solve_system(solver='osqp')
def test_global_to_local_coordinates(): grid = StructuredGrid() point = np.array([[1.2, 1.5, 1.7]]) lx, ly, lz = grid.position_to_local_coordinates(point) assert (np.isclose(lx[0], .2)) assert (np.isclose(ly[0], .5)) assert (np.isclose(lz[0], .7))
def test_equality_FDI_nodes(): xy = np.array(np.meshgrid(np.linspace(0, 1, 50), np.linspace(0, 1, 50))).T.reshape(-1, 2) xyz = np.hstack([xy, np.zeros((xy.shape[0], 1))]) data = pd.DataFrame(xyz, columns=['X', 'Y', 'Z']) data['val'] = np.sin(data['X']) data['w'] = 1 data['feature_name'] = 'strati' origin = np.array([-0.1, -0.1, -0.1]) maximum = np.array([1.1, 1.1, 1.1]) nsteps = np.array([20, 20, 20]) step_vector = (maximum - origin) / nsteps grid = StructuredGrid(origin=origin, nsteps=nsteps, step_vector=step_vector) interpolator = FDI(grid) interpolator.set_value_constraints(data[['X', 'Y', 'Z', 'val', 'w']].to_numpy()) node_idx = np.arange( 0, interpolator.nx)[interpolator.support.nodes[:, 2] > .9] interpolator.add_equality_constraints(node_idx, np.ones(node_idx.shape[0]), name='top') interpolator._setup_interpolator() interpolator.solve_system(solver='cg')
def test_outside_box(): grid = StructuredGrid() # test by setting the scalar field to the y coordinate inside = grid.inside(grid.barycentre + 5) assert np.all( ~inside == np.any((grid.barycentre + 5) > grid.maximum, axis=1)) inside = grid.inside(grid.barycentre - 5) assert np.all( ~inside == np.any((grid.barycentre - 5) < grid.origin, axis=1)) cix, ciy, ciz = grid.position_to_cell_index(grid.barycentre - 5) assert np.all(cix[inside] < grid.nsteps_cells[0]) assert np.all(ciy[inside] < grid.nsteps_cells[1]) assert np.all(ciz[inside] < grid.nsteps_cells[2]) cornersx, cornersy, cornersz = grid.cell_corner_indexes(cix, ciy, ciz) assert np.all(cornersx[inside] < grid.nsteps[0]) assert np.all(cornersy[inside] < grid.nsteps[1]) assert np.all(cornersz[inside] < grid.nsteps[2]) globalidx = grid.global_indicies( np.dstack([cornersx, cornersy, cornersz]).T) # print(globalidx[inside],grid.n_nodes,inside) assert np.all(globalidx[inside] < grid.n_nodes) inside = grid.inside(grid.barycentre - 5) inside, grid.position_to_cell_corners(grid.barycentre - 5) vector = grid.evaluate_gradient(grid.barycentre - 5, grid.nodes[:, 1]) assert np.sum(np.mean(vector[inside, :], axis=0) - np.array([0, 1, 0])) == 0 vector = grid.evaluate_gradient(grid.nodes, grid.nodes[:, 1])
def test_create_structured_grid_origin_nsteps(): grid = StructuredGrid( origin=np.zeros(3), nsteps=np.array([10, 10, 10]), step_vector=np.array([0.1, 0.1, 0.1]), ) assert np.sum(grid.step_vector - np.array([0.1, 0.1, 0.1])) == 0 assert np.sum(grid.maximum - np.ones(3)) == 0
def test_change_maximum_and_origin(): grid = StructuredGrid(origin=np.zeros(3), nsteps=np.array([5, 5, 5])) grid.origin = np.array([-1.0, -1.0, -1.0]) assert np.all(np.isclose(grid.origin, np.array([-1, -1, -1]))) assert np.all(np.isclose(grid.nsteps, np.array([6, 6, 6]))) assert np.all(np.isclose(grid.step_vector, np.ones(3))) grid.maximum = np.array([7.0, 7.0, 7.0]) assert np.all(np.isclose(grid.nsteps, np.array([9, 9, 9]))) assert np.all(np.isclose(grid.maximum, np.array([7.0, 7.0, 7.0]))) assert np.all(np.isclose(grid.step_vector, np.ones(3)))
def test_evaluate_gradient2(): # this test is the same as above but we will use a random vector np.random.seed(0) for i in range(10): step = np.random.uniform(0, 100) grid = StructuredGrid(step_vector=np.array([step, step, step])) # define random vector n = np.random.random(3) n /= np.linalg.norm(n) distance = (n[0] * grid.nodes[:, 0] + n[1] * grid.nodes[:, 1] + n[2] * grid.nodes[:, 2]) vector = grid.evaluate_gradient(np.random.uniform(1, 8, size=(100, 3)), distance) assert np.all(np.isclose(np.sum(vector - n[None, :], axis=1), 0)) == True assert i == 9
def test_inequality_FDI(): try: import osqp except ImportError: print('osqp not installed') return xy = np.array(np.meshgrid(np.linspace(0, 1, 50), np.linspace(0, 1, 50))).T.reshape(-1, 2) xyz = np.hstack([xy, np.zeros((xy.shape[0], 1))]) data = pd.DataFrame(xyz, columns=['X', 'Y', 'Z']) data['val'] = np.sin(data['X']) data['w'] = 1 data['feature_name'] = 'strati' data['l'] = -3 data['u'] = 10 randind = np.arange(0, len(data)) # np.random.shuffle(randind) # # data.loc[randind[:int(50*50*.5)],'val'] = np.nan # np.random.shuffle(randind) # data.loc[randind[:int(50*50*.1)],'val'] = 0 origin = np.array([-0.1, -0.1, -0.1]) maximum = np.array([1.1, 1.1, 1.1]) nsteps = np.array([20, 20, 20]) step_vector = (maximum - origin) / nsteps grid = StructuredGrid(origin=origin, nsteps=nsteps, step_vector=step_vector) interpolator = FDI(grid) interpolator.set_value_constraints(data[['X', 'Y', 'Z', 'val', 'w']].to_numpy()) interpolator.set_inequality_constraints(data[['X', 'Y', 'Z', 'l', 'u']].to_numpy()) interpolator._setup_interpolator() # col = np.arange(0,interpolator.nx,dtype=int) # col = np.tile(col, (interpolator.nx, 1)).T # interpolator.add_inequality_constraints_to_matrix(np.eye(interpolator.nx), # np.zeros(interpolator.nx)-4, # np.zeros(interpolator.nx)+np.inf, # col # ) interpolator.solve_system(solver='osqp')
def __init__(self, values, step_vector, nsteps, origin=np.zeros(3), name="scalar field"): """[summary] Parameters ---------- values : numpy array nodes values of regular grid step_vector : numpy array step vector for x,y,z step nsteps : numpy array number of steps name : string, optional name of the feature for the visualisation """ self.values = values self.grid = StructuredGrid(origin, nsteps, step_vector) self.name = name
def test_create_structured_grid(): grid = StructuredGrid()
def test_get_element_outside(): grid = StructuredGrid() point = np.array([grid.origin - np.ones(3)]) idc, inside = grid.position_to_cell_corners(point) assert inside[0] == False
def test_change_origin(): grid = StructuredGrid(origin=np.zeros(3), nsteps=np.array([5, 5, 5])) grid.origin = np.array([-1, -1, -1]) assert np.all(grid.origin == np.array([-1, -1, -1])) assert np.all(grid.nsteps == np.array([6, 6, 6])) assert np.all(grid.step_vector == np.ones(3))
def test_get_element(): grid = StructuredGrid() point = grid.barycentre()[[0], :] idc, inside = grid.position_to_cell_corners(point) bary = np.mean(grid.nodes[idc, :], axis=0) assert np.sum(point - bary) == 0
def test_evaluate_gradient(): grid = StructuredGrid() grid.update_property('Y', grid.nodes[:, 1]) vector = np.mean(grid.evaluate_gradient(grid.barycentre(), 'Y'), axis=0) # vector/=np.linalg.norm(vector) assert np.sum(vector - np.array([0, grid.step_vector[1], 0])) == 0
def test_evaluate_value(): grid = StructuredGrid() grid.update_property('X', grid.nodes[:, 0]) assert np.sum(grid.barycentre()[:, 0] - grid.evaluate_value(grid.barycentre(), 'X')) == 0
def test_create_structured_grid_origin_nsteps(): grid = StructuredGrid(origin=np.zeros(3), nsteps=np.array([5, 5, 5])) assert grid.n_nodes == 5 * 5 * 5 assert np.sum(grid.maximum - np.ones(3) * 5) == 0
def test_change_maximum(): grid = StructuredGrid(origin=np.zeros(3), nsteps=np.array([5, 5, 5])) grid.maximum = np.array([7, 7, 7]) assert np.all(np.isclose(grid.nsteps, np.array([8, 8, 8]))) assert np.all(np.isclose(grid.maximum, np.array([7, 7, 7]))) assert np.all(np.isclose(grid.step_vector, np.ones(3)))
def test_evaluate_value(): grid = StructuredGrid() assert ( np.sum(grid.barycentre[:, 0] - grid.evaluate_value(grid.barycentre, grid.nodes[:, 0])) == 0)