###################################################################### # Modelling S2 # ~~~~~~~~~~~~ # model = GeologicalModel(bb[0,:],bb[1,:]) model.set_model_data(data) s2 = model.create_and_add_fold_frame('s2', nelements=10000, buffer=0.5, solver='lu', damp=True) viewer = LavaVuModelViewer(model) viewer.add_scalar_field(s2[0], cmap='prism') viewer.add_isosurface(s2[0], slices=[0,1]) viewer.add_data(s2[0]) viewer.rotate(rotation) viewer.display() ###################################################################### # Modelling S1 # ~~~~~~~~~~~~ # s1 = model.create_and_add_folded_fold_frame('s1', limb_wl=4,
def loop2LoopStructural(thickness_file,orientation_file,contacts_file,bbox): from LoopStructural import GeologicalModel from LoopStructural.visualisation import LavaVuModelViewer import lavavu df = pd.read_csv(thickness_file) thickness = {} for f in df['formation'].unique(): thickness[f] = np.mean(df[df['formation']==f]['thickness']) #display(thickness) order = ['P__TKa_xs_k','P__TKo_stq','P__TKk_sf','P__TK_s', 'A_HAu_xsl_ci', 'A_HAd_kd', 'A_HAm_cib', 'A_FOj_xs_b', 'A_FO_xo_a', 'A_FO_od', 'A_FOu_bbo', 'A_FOp_bs', 'A_FOo_bbo', 'A_FOh_xs_f', 'A_FOr_b'] strat_val = {} val = 0 for o in order: if o in thickness: strat_val[o] = val val+=thickness[o] #display(strat_val) orientations = pd.read_csv(orientation_file) contacts = pd.read_csv(contacts_file) contacts['val'] = np.nan for o in strat_val: contacts.loc[contacts['formation']==o,'val'] = strat_val[o] data = pd.concat([orientations,contacts],sort=False) data['type'] = np.nan for o in order: data.loc[data['formation']==o,'type'] = 's0' data boundary_points = np.zeros((2,3)) boundary_points[0,0] = bbox[0] boundary_points[0,1] = bbox[1] boundary_points[0,2] = -20000 boundary_points[1,0] = bbox[2] boundary_points[1,1] = bbox[3] boundary_points[1,2] = 1200 model = GeologicalModel(boundary_points[0,:],boundary_points[1,:]) model.set_model_data(data) strati = model.create_and_add_foliation('s0', #identifier in data frame interpolatortype="FDI", #which interpolator to use nelements=400000, # how many tetras/voxels buffer=0.1, # how much to extend nterpolation around box solver='external', external=solve_pyamg ) #viewer = LavaVuModelViewer() viewer = LavaVuModelViewer(model) viewer.add_data(strati['feature']) viewer.add_isosurface(strati['feature'], # nslices=10, slices= strat_val.values(), # voxet={'bounding_box':boundary_points,'nsteps':(100,100,50)}, paint_with=strati['feature'], cmap='tab20' ) #viewer.add_scalar_field(model.bounding_box,(100,100,100), # 'scalar', ## norm=True, # paint_with=strati['feature'], # cmap='tab20') viewer.add_scalar_field(strati['feature']) viewer.set_viewer_rotation([-53.8190803527832, -17.1993350982666, -2.1576387882232666]) #viewer.save("fdi_surfaces.png") viewer.interactive()
# It is recommended to visualise # the vectorfield at a lower resolution than the mesh otherwise it can be # difficult to see the vectors. You can use numpy stepping along the # array: ``locations = mesh.barycentre[::20,:]`` which will sample every # 20th sample in the numpy array. # viewer = LavaVuModelViewer(model,background="white") # determine the number of unique surfaces in the model from # the input data and then calculate isosurfaces for this unique = np.unique(strati.interpolator.get_value_constraints()[:,3]) viewer.add_isosurface(strati, slices=unique, cmap='prism', paint_with=strati) viewer.add_section(strati, axis='x', value=0., boundary_points=model.bounding_box, nsteps=np.array([30,30,30]), cmap='prism') viewer.add_scalar_field(strati, cmap='prism') viewer.add_model(cmap='tab20') # Add the data addgrad/addvalue arguments are optional viewer.add_data(strati,addgrad=True,addvalue=True, cmap='prism') viewer.lv.rotate([-85.18760681152344, 42.93233871459961, 0.8641873002052307]) viewer.display()# to add an interactive display