コード例 #1
0

######################################################################
# Modelling S2
# ~~~~~~~~~~~~
# 

model = GeologicalModel(bb[0,:],bb[1,:])
model.set_model_data(data)
s2 = model.create_and_add_fold_frame('s2',
                                     nelements=10000, 
                                     buffer=0.5,
                                    solver='lu',
                                    damp=True)
viewer = LavaVuModelViewer(model)
viewer.add_scalar_field(s2[0],
                       cmap='prism')
viewer.add_isosurface(s2[0],
                     slices=[0,1])
viewer.add_data(s2[0])
viewer.rotate(rotation)
viewer.display()



######################################################################
# Modelling S1
# ~~~~~~~~~~~~
# 

s1 = model.create_and_add_folded_fold_frame('s1',
                                            limb_wl=4, 
コード例 #2
0
def loop2LoopStructural(thickness_file,orientation_file,contacts_file,bbox):
    from LoopStructural import GeologicalModel
    from LoopStructural.visualisation import LavaVuModelViewer
    import lavavu



    df = pd.read_csv(thickness_file)
    
    thickness = {}
    for f in df['formation'].unique():
        thickness[f] = np.mean(df[df['formation']==f]['thickness'])

    #display(thickness)
    order = ['P__TKa_xs_k','P__TKo_stq','P__TKk_sf','P__TK_s',
    'A_HAu_xsl_ci', 'A_HAd_kd', 'A_HAm_cib', 'A_FOj_xs_b',
    'A_FO_xo_a', 'A_FO_od', 'A_FOu_bbo',
    'A_FOp_bs', 'A_FOo_bbo', 'A_FOh_xs_f', 'A_FOr_b']
    
    strat_val = {}
    val = 0
    for o in order:
        if o in thickness:
            strat_val[o] = val
            val+=thickness[o]

    #display(strat_val)    
    
    orientations = pd.read_csv(orientation_file)
    contacts = pd.read_csv(contacts_file) 
    
    contacts['val'] = np.nan 

    for o in strat_val:
        contacts.loc[contacts['formation']==o,'val'] = strat_val[o]
    data = pd.concat([orientations,contacts],sort=False)
    data['type'] = np.nan
    for o in order:
        data.loc[data['formation']==o,'type'] = 's0'
    data     
    
    boundary_points = np.zeros((2,3))
    boundary_points[0,0] = bbox[0] 
    boundary_points[0,1] = bbox[1] 
    boundary_points[0,2] = -20000 
    boundary_points[1,0] = bbox[2] 
    boundary_points[1,1] = bbox[3] 
    boundary_points[1,2] = 1200
    
    model = GeologicalModel(boundary_points[0,:],boundary_points[1,:])
    model.set_model_data(data)
    strati = model.create_and_add_foliation('s0', #identifier in data frame
                                                        interpolatortype="FDI", #which interpolator to use
                                                        nelements=400000, # how many tetras/voxels
                                                        buffer=0.1, # how much to extend nterpolation around box
                                                        solver='external',
                                                        external=solve_pyamg
                                                       )   
    #viewer = LavaVuModelViewer()
    viewer = LavaVuModelViewer(model)
    viewer.add_data(strati['feature'])
    viewer.add_isosurface(strati['feature'],
    #                       nslices=10,
                          slices= strat_val.values(),
    #                     voxet={'bounding_box':boundary_points,'nsteps':(100,100,50)},
                          paint_with=strati['feature'],
                          cmap='tab20'

                         )
    #viewer.add_scalar_field(model.bounding_box,(100,100,100),
   #                           'scalar',
    ##                             norm=True,
    #                         paint_with=strati['feature'],
    #                         cmap='tab20')
    viewer.add_scalar_field(strati['feature'])
    viewer.set_viewer_rotation([-53.8190803527832, -17.1993350982666, -2.1576387882232666])
    #viewer.save("fdi_surfaces.png")
    viewer.interactive()
コード例 #3
0
# It is recommended to visualise
# the vectorfield at a lower resolution than the mesh otherwise it can be
# difficult to see the vectors. You can use numpy stepping along the
# array: ``locations = mesh.barycentre[::20,:]`` which will sample every
# 20th sample in the numpy array.
# 

viewer = LavaVuModelViewer(model,background="white")

# determine the number of unique surfaces in the model from 
# the input data and then calculate isosurfaces for this
unique = np.unique(strati.interpolator.get_value_constraints()[:,3])
viewer.add_isosurface(strati,
                       slices=unique,  
                       cmap='prism',
                      paint_with=strati)

viewer.add_section(strati,
                   axis='x',
                   value=0.,
                   boundary_points=model.bounding_box, 
                   nsteps=np.array([30,30,30]),
                  cmap='prism')
viewer.add_scalar_field(strati,
                     cmap='prism')
viewer.add_model(cmap='tab20')

# Add the data addgrad/addvalue arguments are optional
viewer.add_data(strati,addgrad=True,addvalue=True, cmap='prism')
viewer.lv.rotate([-85.18760681152344, 42.93233871459961, 0.8641873002052307])
viewer.display()# to add an interactive display