コード例 #1
0
ファイル: AeroFunctions.py プロジェクト: henrystoldt/MAPLEAF
def forceFromCoefficients(rocketState, environment, Cd, Cl, CMx, CMy, CMz,
                          CPLocation, refArea, refLength):
    ''' Initialize ForceMomentSystem from all aerodynamic coefficients '''
    q = AeroParameters.getDynamicPressure(rocketState, environment)
    if q == 0.0:
        # No force without dynamic pressure
        return ForceMomentSystem(Vector(0, 0, 0))
    nonDimConstant = q * refArea

    #### Drag ####
    localFrameAirVel = AeroParameters.getLocalFrameAirVel(
        rocketState, environment)
    dragDirection = localFrameAirVel.normalize()
    dragForce = dragDirection * Cd

    #### Lift ####
    # Find the lift force direction
    # Lift force will be in the same plane as the normalForceDirection & rocketFrameAirVel vectors
    # But, the lift force will be perpendicular to rocketFraeAirVel, whereas the normalForceDirection might form an acute angle with it
    # Rotate the normal force direction vector until it's perpendicular with rocketFrameAirVel
    normalForceDir = AeroParameters.getNormalAeroForceDirection(
        rocketState, environment)
    rotAxis = localFrameAirVel.crossProduct(normalForceDir)
    angle = math.pi / 2 - localFrameAirVel.angle(normalForceDir)
    rotatorQuat = Quaternion(rotAxis, angle)
    liftDirection = rotatorQuat.rotate(normalForceDir)
    liftForce = liftDirection * Cl

    # Combine and redimensionalize
    totalForce = (dragForce + liftForce) * nonDimConstant

    #### Moments ####
    moments = Vector(CMx, CMy, CMz) * nonDimConstant * refLength

    return ForceMomentSystem(totalForce, CPLocation, moments)
コード例 #2
0
class TimeQuaternion:
    def setup(self):
        self.q1 = Quaternion(1, 2, 3, 4)
        self.q2 = Quaternion(2, 3, 4, 5)
        self.v1 = Vector(1, 2, 3)

    def time_multiplyQuaternions(self):
        q3 = self.q1 * self.q2

    def time_rotateVector(self):
        v2 = self.q1.rotate(self.v1)
コード例 #3
0
ファイル: test_Fins.py プロジェクト: henrystoldt/MAPLEAF
    def getFinSliceArgs(self, vel, orientation, angVel, fin1, finSlicePosition=0):
        rocketState = RigidBodyState(Vector(0,0,0), vel, orientation, angVel)
        CG = self.rocket2.getCG(0, rocketState)

        rocketVelocity = AeroParameters.getLocalFrameAirVel(rocketState, self.currentConditions)

        # Add fin velocities due to motion of the rocket
        velocityDueToRocketPitchYaw = rocketState.angularVelocity.crossProduct(fin1.position - CG)*(-1) #The negative puts it in the wind frame

        #We need to find the angle between the rocket velocity vector and the plane described by the fin deflection angle 
        #and the shaft normal
        finNormal = fin1.spanwiseDirection.crossProduct(Vector(0, 0, 1))
        finDeflectionAngle = fin1.finAngle # Adjusted by parent finset during each timestep
        if(finDeflectionAngle != 0):
            rotation = Quaternion(axisOfRotation = fin1.spanwiseDirection, angle=math.radians(finDeflectionAngle))
            finNormal = rotation.rotate(finNormal)

        finUnitSpanTangentialVelocity = rocketState.angularVelocity.crossProduct(fin1.spanwiseDirection)*(-1)
        finVelWithoutRoll = rocketVelocity + velocityDueToRocketPitchYaw

        return finSlicePosition, finVelWithoutRoll, finUnitSpanTangentialVelocity, finNormal, fin1.spanwiseDirection, fin1.stallAngle
コード例 #4
0
ファイル: Plotting.py プロジェクト: henrystoldt/MAPLEAF
def _createReferenceVectors(nCanards,
                            maxAbsCoord,
                            rocketLengthFactor=0.25,
                            finLengthFactor=0.05):
    '''
        Creates a longitudinal vector and an array of nCanards perpendicular vectors. 
        These represent the rocket in the local frame and are rotated according to it's rigid body state at each time step.
        The size of the longitudinal and perpendicular lines are controlled by the rocketLength and finLength factor arguments and the maxAbsCoord.
    '''
    # Create vector reoresenting longitudinal axis in local frame
    refAxis = Vector(0, 0, maxAbsCoord * rocketLengthFactor)

    # Create vectors going perpedicularly out, in the direction of each fin/canard in local frame
    radiansPerFin = radians(360 / nCanards)
    finToFinRotation = Quaternion(axisOfRotation=Vector(0, 0, 1),
                                  angle=radiansPerFin)
    perpVectors = [Vector(maxAbsCoord * finLengthFactor, 0, 0)]
    for i in range(nCanards - 1):
        newVec = finToFinRotation.rotate(perpVectors[-1])
        perpVectors.append(newVec)

    return refAxis, perpVectors
コード例 #5
0
class TestQuaternion(unittest.TestCase):
    def setUp(self):
        self.q1 = Quaternion(components=[1.0, 2.0, 3.0, 4.0])
        self.q2 = Quaternion(components=[-1.0, -2.0, -3.0, -4.0])
        self.q3 = Quaternion(axisOfRotation=Vector(1.0, 0.0, 0.0),
                             angle=pi / 2)

        self.q4 = Quaternion(components=[1.0, 0.0, 1.0, 0.0])
        self.q5 = Quaternion(components=[1.0, 0.5, 0.5, 0.75])

        self.rotQ = Quaternion(axisOfRotation=Vector(2.0, -3.0, 5.0), angle=2)
        self.rotQ2 = Quaternion(axisOfRotation=Vector(0.0, 0.0, 1.0),
                                angle=pi / 2)
        self.rotQ3 = Quaternion(axisOfRotation=Vector(0.0, 1.0, 0.0),
                                angle=pi / 2)
        self.rotQ4 = Quaternion(axisOfRotation=Vector(1.0, 0.0, 0.0),
                                angle=pi / 2)
        self.rotQ5 = Quaternion(axisOfRotation=Vector(0.0, 0.0, 1.0), angle=pi)
        self.rotQ6 = Quaternion(axisOfRotation=Vector(0.0, 1.0, 0.0), angle=pi)
        self.rotQ7 = Quaternion(axisOfRotation=Vector(1.0, 0.0, 0.0), angle=pi)

    #Test same method as print statement
    def test_str(self):
        self.assertEqual(str(self.q1), "<1.0, 2.0, 3.0, 4.0>")

    def test_scaleRotation(self):
        scaledQuat = self.q3.scaleRotation(0.5)
        definedQuat = Quaternion(axisOfRotation=Vector(1, 0, 0), angle=pi / 4)
        assertQuaternionsAlmostEqual(self, scaledQuat, definedQuat, 14)

    def test_slerp(self):
        testQ = self.q1.slerp(self.q3, 0)
        assertQuaternionsAlmostEqual(self, (self.q1 * testQ).normalize(),
                                     self.q1.normalize())

        testQ = self.q1.slerp(self.q3, 1)
        testQ = (self.q1 * testQ).normalize()
        assertQuaternionsAlmostEqual(self, testQ, self.q3.normalize())

        testQ = self.rotQ2.slerp(self.rotQ5, 0.5)
        testQ = (self.rotQ2 * testQ).normalize()
        assertQuaternionsAlmostEqual(
            self, testQ,
            Quaternion(axisOfRotation=Vector(0, 0, 1), angle=3 * pi / 4))

    #Test using the quaternion to rotate a vector
    #TODO: verify with matlab or other example
    def test_rotate(self):
        assertVectorsAlmostEqual(self, self.rotQ2.rotate(Vector(1, 1, 1)),
                                 Vector(-1, 1, 1))
        assertVectorsAlmostEqual(self, self.rotQ3.rotate(Vector(1, 1, 1)),
                                 Vector(1, 1, -1))
        assertVectorsAlmostEqual(self, self.rotQ4.rotate(Vector(1, 1, 1)),
                                 Vector(1, -1, 1))
        assertVectorsAlmostEqual(self, self.rotQ5.rotate(Vector(1, 1, 1)),
                                 Vector(-1, -1, 1))
        assertVectorsAlmostEqual(self, self.rotQ6.rotate(Vector(1, 1, 1)),
                                 Vector(-1, 1, -1))
        assertVectorsAlmostEqual(self, self.rotQ7.rotate(Vector(1, 1, 1)),
                                 Vector(1, -1, -1))

    def test_constructor(self):
        assertQuaternionsAlmostEqual(
            self, self.q1, Quaternion(components=[1.0, 2.0, 3.0, 4.0]))
        expectedQ3 = Quaternion(components=[sin(pi / 4), sin(pi / 4), 0, 0])
        assertQuaternionsAlmostEqual(self, self.q3, expectedQ3)

    #Test ==
    def test_equal(self):
        self.assertEqual(self.q1, Quaternion(components=[1, 2, 3, 4]))
        self.assertNotEqual(self.q1, Quaternion(components=[1, 2, 3, 5]))
        #Check that can't compare Quaterion to a scalar
        with self.assertRaises(AttributeError):
            self.q1 == 33

    #Test +
    def test_add(self):
        self.assertEqual(self.q1 + self.q2,
                         Quaternion(components=[0, 0, 0, 0]))
        self.assertEqual(self.q1 + self.q1,
                         Quaternion(components=[2, 4, 6, 8]))
        #Check that adding a scalar and quaternion is not allowed
        with self.assertRaises(AttributeError):
            self.q1 + 33

    #Test -
    def test_subtract(self):
        self.assertEqual(self.q1 - self.q1,
                         Quaternion(components=[0, 0, 0, 0]))
        self.assertEqual(self.q1 - self.q2,
                         Quaternion(components=[2, 4, 6, 8]))
        #Check that adding a scalar and quaternion is not allowed
        with self.assertRaises(AttributeError):
            self.q1 - 33

    #Test * scalar
    def test_scalarMult(self):
        self.assertEqual(self.q1 * 2, Quaternion(components=[2, 4, 6, 8]))

    #Test * quaternion
    def test_quaternionMult(self):
        self.assertEqual(self.q4 * self.q5,
                         Quaternion(components=[0.5, 1.25, 1.5, 0.25]))
        self.assertEqual(self.q4 * self.q4,
                         Quaternion(components=[0, 0, 2, 0]))

        # Check that order of rotations is left to right
        rot1 = Quaternion(axisOfRotation=Vector(0, 0, 1), angle=(pi / 2))
        rot2 = Quaternion(axisOfRotation=Vector(1, 0, 0), angle=(pi / 2))
        totalRotation = rot1 * rot2

        initZAxis = Vector(0, 0, 1)
        finalZAxis = totalRotation.rotate(initZAxis)
        initXAxis = Vector(1, 0, 0)
        finalXAxis = totalRotation.rotate(initXAxis)

        assertVectorsAlmostEqual(self, finalXAxis, Vector(0, 1, 0))
        assertVectorsAlmostEqual(self, finalZAxis, Vector(1, 0, 0))

    def test_scalarDivision(self):
        self.assertEqual(self.q1.__truediv__(2),
                         Quaternion(components=[0.5, 1, 1.5, 2]))

    def test_quaternionDivision(self):
        testQ = self.q4.__truediv__(self.q5)
        expectedQ = Quaternion(components=[0.7273, 0.1212, 0.2424, -0.6061])
        assertQuaternionsAlmostEqual(self, testQ, expectedQ, 3)

    def test_norm(self):
        self.assertEqual(self.q1.norm(), sqrt(30))

    def test_normalize(self):
        testQ = self.q4.normalize()
        expectedQ = Quaternion(components=[0.7071, 0.0, 0.7071, 0.0])
        assertQuaternionsAlmostEqual(self, testQ, expectedQ, 3)

    def test_conjugate(self):
        assertQuaternionsAlmostEqual(self, self.q4.conjugate(),
                                     Quaternion(components=[1, 0, -1, 0]))

    def test_inverse(self):
        assertQuaternionsAlmostEqual(
            self, self.q4.inverse(),
            Quaternion(components=[0.5, 0.0, -0.5, 0.0]))

    def test_rotationAxis(self):
        axisResult = self.rotQ.rotationAxis()
        axis = Vector(2, -3, 5).normalize()
        self.assertAlmostEqual(axisResult.X, axis.X)
        self.assertAlmostEqual(axisResult.Y, axis.Y)
        self.assertAlmostEqual(axisResult.Z, axis.Z)

    def test_rotationAngle(self):
        self.assertAlmostEqual(self.rotQ.rotationAngle(), 2)

    def test_plot(self):
        self.q1.plotRotation(showPlot=False)
コード例 #6
0
ファイル: Fins.py プロジェクト: henrystoldt/MAPLEAF
    def _barrowmanAeroFunc(self,
                           rocketState,
                           time,
                           environment,
                           precomputedData,
                           CG=Vector(0, 0, 0),
                           finDeflectionAngle=None):
        '''
            Precomputed Data is a named tuple (PreComputedFinAeroData) which contains data/results from the parts of the fin aerodynamics calculation
                that are common to all fins in a FinSet (drag calculations mostly). These calculations are performed at the FinSet level.
            Only the parts of the Fin Aero Computation that change from fin to fin (normal force mostly, since different fins can have different angles of attack) are computed here
        '''
        Mach = AeroParameters.getMachNumber(rocketState, environment)
        dynamicPressure = AeroParameters.getDynamicPressure(
            rocketState, environment)

        if finDeflectionAngle == None:
            finDeflectionAngle = self.finAngle  # Adjusted by parent finset during each timestep, when the FinSet is controlled

        # Unpack precomputedData
        airVelRelativeToFin, CPXPos, totalDragCoefficient = precomputedData

        #### Compute normal force-----------------------------------------------------------------------------------------------------------------

        # Find fin normal vector after fin deflection
        finDeflectionRotation = Quaternion(
            axisOfRotation=self.spanwiseDirection,
            angle=radians(finDeflectionAngle))
        finNormal = finDeflectionRotation.rotate(self.undeflectedFinNormal)
        # Get the tangential velocity component vector, per unit radial distance from the rocket centerline
        rollAngVel = AngularVelocity(0, 0, rocketState.angularVelocity.Z)
        unitSpanTangentialAirVelocity = rollAngVel.crossProduct(
            self.spanwiseDirection) * (-1)

        def subsonicNormalForce(Mach):  # Subsonic linear method
            tempBeta = AeroParameters.getBeta(Mach)
            CnAlpha = getFinCnAlpha_Subsonic_Barrowman(self.span,
                                                       self.planformArea,
                                                       tempBeta,
                                                       self.midChordSweep)
            return getSubsonicFinNormalForce(airVelRelativeToFin,
                                             unitSpanTangentialAirVelocity,
                                             finNormal, self.spanwiseDirection,
                                             self.CPSpanWisePosition.length(),
                                             CnAlpha, self)

        def supersonicNormalForce(Mach):  # Supersonic Busemann method
            gamma = AeroFunctions.getGamma()
            tempBeta = AeroParameters.getBeta(Mach)
            K1, K2, K3, Kstar = getBusemannCoefficients(Mach, tempBeta, gamma)

            # Mach Cone coords
            machAngle = asin(1 / Mach)
            machCone_negZPerRadius = 1 / tan(machAngle)
            machConeEdgeZPos = []
            outerRadius = self.spanSliceRadii[-1]
            for i in range(len(self.spanSliceRadii)):
                machConeAtCurrentRadius = (
                    outerRadius - self.spanSliceRadii[i]
                ) * machCone_negZPerRadius + self.tipPosition
                machConeEdgeZPos.append(machConeAtCurrentRadius)

            return getSupersonicFinNormalForce(
                airVelRelativeToFin, unitSpanTangentialAirVelocity, finNormal,
                machConeEdgeZPos, self.spanwiseDirection,
                self.CPSpanWisePosition.length(), K1, K2, K3, Kstar, self)

        if Mach <= 0.8:
            normalForceMagnitude, finMoment = subsonicNormalForce(Mach)

        elif Mach < 1.4:
            # Interpolate in transonic region
            # TODO: Do this with less function evaluations? Perhaps precompute AOA and Mach combinations and simply interpolate? Lazy precompute? Cython?
            x1, x2 = 0.8, 1.4  # Start, end pts of interpolated region
            dx = 0.001

            # Find normal force and derivative at start of interpolation interval
            f_x1, m_x1 = subsonicNormalForce(x1)
            f_x12, m_x12 = subsonicNormalForce(x1 + dx)

            # Find normal force and derivative at end of interpolation interval
            f_x2, m_x2 = supersonicNormalForce(x2)
            f_x22, m_x22 = supersonicNormalForce(x2 + dx)

            normalForceMagnitude = Interpolation.cubicInterp(
                Mach, x1, x2, f_x1, f_x2, f_x12, f_x22, dx)
            finMoment = Interpolation.cubicInterp(Mach, x1, x2, m_x1, m_x2,
                                                  m_x12, m_x22, dx)
        else:
            normalForceMagnitude, finMoment = supersonicNormalForce(Mach)

        # Complete redimensionalization of normal force coefficients by multiplying by dynamic pressure
        # Direct the normal force along the fin's normal direction
        normalForce = normalForceMagnitude * dynamicPressure * finNormal
        finMoment *= dynamicPressure

        #### Get axial force-----------------------------------------------------------------------------------------------------------------------

        avgAOA = getFinSliceAngleOfAttack(
            self.spanSliceRadii[round(len(self.spanSliceAreas) / 2)],
            airVelRelativeToFin, unitSpanTangentialAirVelocity, finNormal,
            self.spanwiseDirection,
            self.stallAngle)  # Approximate average fin AOA
        totalAxialForceCoefficient = AeroFunctions.getDragToAxialForceFactor(
            avgAOA) * totalDragCoefficient
        axialForceMagnitude = totalAxialForceCoefficient * self.rocket.Aref * dynamicPressure
        axialForceDirection = self.spanwiseDirection.crossProduct(finNormal)
        axialForce = axialForceDirection * axialForceMagnitude

        #### Get CP Location ----------------------------------------------------------------------------------------------------------------------

        CPChordWisePosition = self.position - Vector(
            0, 0, CPXPos
        )  # Ignoring the change in CP position due to fin deflection for now
        globalCP = self.CPSpanWisePosition + CPChordWisePosition

        #### Assemble total force moment system objects--------------------------------------------------------------------------------------------

        totalForce = normalForce + axialForce
        return ForceMomentSystem(totalForce,
                                 globalCP,
                                 moment=Vector(0, 0, finMoment)), globalCP
コード例 #7
0
ファイル: launchRail.py プロジェクト: henrystoldt/MAPLEAF
 def getDirection(self, time):
     ''' Launch Rail moves with the earth's surface '''
     rotationSoFar = Quaternion(axisOfRotation=Vector(0, 0, 1),
                                angle=(self.earthAngVel * time))
     return rotationSoFar.rotate(self.initialDirection)
コード例 #8
0
    def complexRotationTest(self, integrationMethod):
        '''
            Test where the rigid body is first accelerated and decelerated about the y-axis, completing a 90 degree rotaion, 
            subsequently does the same about the z-axis 
        '''
        initXAxis = Vector(1, 0, 0)
        initYAxis = Vector(0, 1, 0)
        initZAxis = Vector(0, 0, 1)

        initOrientation = Quaternion(axisOfRotation=Vector(1, 0, 0), angle=0)

        initAngularMomentum = AngularVelocity(rotationVector=self.zeroVec)

        complexRotatingState = RigidBodyState(self.zeroVec, self.zeroVec,
                                              initOrientation,
                                              initAngularMomentum)

        def step1MomentFunc(*allArgs):
            return ForceMomentSystem(
                self.zeroVec, moment=Vector(0, 0.5, 0)
            )  #Acceleration and deceleration steps to give 90 degree rotations in each axis

        def step2MomentFunc(*allArgs):
            return ForceMomentSystem(self.zeroVec, moment=Vector(
                0, -0.5, 0))  #using a time step of pi

        def step3MomentFunc(*allArgs):
            return ForceMomentSystem(
                self.zeroVec, moment=Vector(0, 0, 0.5)
            )  #There is one acceleration and one deceleration for each rotation to make it static

        def step4MomentFunc(*allArgs):
            return ForceMomentSystem(self.zeroVec, moment=Vector(0, 0, -0.5))

        def constInertiaFunc(*allArgs):
            return self.constInertia

        # Create rigid body and apply moments for one time step each
        self.simDefinition.setValue(
            "SimControl.TimeStepAdaptation.minTimeStep",
            str(math.sqrt(math.pi)))
        complexRotatingBody = RigidBody(complexRotatingState,
                                        step1MomentFunc,
                                        constInertiaFunc,
                                        integrationMethod=integrationMethod,
                                        simDefinition=self.simDefinition)
        complexRotatingBody.integrate.firstSameAsLast = False  # First same as last causes problems here - perhaps with the constantly changing integration function

        complexRotatingBody.timeStep(math.sqrt(
            math.pi))  #Apply each moment and do the timestep
        complexRotatingBody.forceFunc = step2MomentFunc
        complexRotatingBody.timeStep(math.sqrt(math.pi))
        complexRotatingBody.forceFunc = step3MomentFunc
        complexRotatingBody.timeStep(math.sqrt(math.pi))
        complexRotatingBody.forceFunc = step4MomentFunc
        complexRotatingBody.timeStep(math.sqrt(math.pi))

        newXVector = complexRotatingBody.state.orientation.rotate(
            initXAxis
        )  #Calculate the new vectors from the integration in the rigid body
        newYVector = complexRotatingBody.state.orientation.rotate(initYAxis)
        newZVector = complexRotatingBody.state.orientation.rotate(initZAxis)

        correctRotation1 = Quaternion(
            axisOfRotation=initYAxis, angle=math.pi /
            2)  #Calculate the new vectors by hand (90 degree rotations)
        newCorrectXAxis1 = correctRotation1.rotate(initXAxis)  # (0, 0, -1)
        newCorrectYAxis1 = correctRotation1.rotate(initYAxis)  # (0, 1, 0)
        newCorrectZAxis1 = correctRotation1.rotate(initZAxis)  # (1, 0, 0)

        correctRotation2Axis = newCorrectZAxis1  #(1, 0, 0)
        correctRotation2 = Quaternion(axisOfRotation=correctRotation2Axis,
                                      angle=math.pi / 2)
        newCorrectXAxis2 = correctRotation2.rotate(
            newCorrectXAxis1)  # (0, 1, 0)
        newCorrectYAxis2 = correctRotation2.rotate(
            newCorrectYAxis1)  # (0, 0, 1)
        newCorrectZAxis2 = correctRotation2.rotate(
            newCorrectZAxis1)  # (1, 0, 0)

        assertVectorsAlmostEqual(self, newXVector, newCorrectXAxis2)
        assertVectorsAlmostEqual(self, newYVector, newCorrectYAxis2)
        assertVectorsAlmostEqual(self, newZVector, newCorrectZAxis2)