コード例 #1
0
def main():
    from MAST.structopt import Optimizer
    from MAST.structopt import tools

    #Test for cluster structures
    parameters = {
        'structure': 'Cluster',
        'optimizer_type': 'GA',
        'atomlist': [('Au', 10, 0, 0), ('Cu', 10, 0, 0)]
    }
    A = Optimizer(parameters)
    A.algorithm_initialize()
    A.calc = tools.setup_calculator(A)
    offspring = A.generation_set([])
    indiv = offspring[0].duplicate()
    ind1 = offspring[1].duplicate()
    ind2 = offspring[2].duplicate()
    test_mutations(indiv)
    test_cx(ind1, ind2)
    A.close_output()

    #Test for defect structures
    parameters = {
        'structure': 'Defect',
        'optimizer_type': 'GA',
        'atomlist': [('Au', 3, 0, 0), ('Cu', 3, 0, 0)],
        'supercell': (3, 3, 3),
        'SolidFile': 'BFe.xyz',
        'SolidCell': [8.61, 8.61, 8.61]
    }
    A = Optimizer(parameters)
    A.algorithm_initialize()
    A.calc = tools.setup_calculator(A)
    offspring = A.generation_set([])
    indiv = offspring[0].duplicate()
    ind1 = offspring[1].duplicate()
    ind2 = offspring[2].duplicate()
    test_mutations(indiv)
    test_cx(ind1, ind2)
    A.close_output()

    #Test for crystal structures
    parameters = {
        'structure': 'Crystal',
        'optimizer_type': 'GA',
        'atomlist': [('Au', 10, 0, 0), ('Cu', 10, 0, 0)]
    }
    A = Optimizer(parameters)
    A.algorithm_initialize()
    A.calc = tools.setup_calculator(A)
    offspring = A.generation_set([])
    indiv = offspring[0].duplicate()
    ind1 = offspring[1].duplicate()
    ind2 = offspring[2].duplicate()
    test_mutations(indiv)
    test_cx(ind1, ind2)
    A.close_output()
コード例 #2
0
ファイル: quench.py プロジェクト: uw-cmg/MAST
def quench(indiv, Optimizer):
    """Move function to perform a molecular dynamics NVT quenching of structure
    Inputs:
        indiv = Individual class object to be altered
        Optimizer = Optimizer class object with needed parameters
    Outputs:
        indiv = Altered Individual class object
    """
    if "MU" in Optimizer.debug:
        debug = True
    else:
        debug = False
    olammps_min = Optimizer.lammps_min
    ocalc = Optimizer.calc
    mincomd = (
        "1.0e-8 1.0e-8 1000 100000\nunfix fix_nve\nfix fix_nvt all nvt temp "
        + repr(Optimizer.quench_max_temp)
        + " "
        + repr(Optimizer.quench_min_temp)
        + " "
        + repr(Optimizer.quench_step_size)
    )
    mincomd += (
        "\nrun "
        + repr(Optimizer.quench_n_steps_1)
        + "\nunfix fix_nvt\nfix fix_nve all nve\nminimize 1.0e-8 1.0e-8 1000 100000"
    )
    mincomd += (
        "\nunfix fix_nve\nfix fix_nvt all nvt temp "
        + repr(Optimizer.quench_max_temp)
        + " "
        + repr(Optimizer.quench_min_temp)
        + " "
        + repr(Optimizer.quench_step_size)
    )
    mincomd += (
        "\nrun "
        + repr(Optimizer.quench_n_steps_2)
        + "\nunfix fix_nvt\nfix fix_nve all nve\nminimize 1.0e-8 1.0e-8 1000 100000"
    )
    Optimizer.lammps_min = mincomd
    Optimizer.calc = setup_calculator(Optimizer)
    outs = fitness_switch([Optimizer, indiv])
    indiv = outs[0]
    Optimizer.output.write("Quench NVT Mutation performed on individual\n")
    Optimizer.output.write("Index = " + repr(indiv.index) + "\n")
    Optimizer.output.write(outs[1])
    Optimizer.output.write("New fitness : " + repr(indiv.fitness) + "\n")
    muttype = "Q"
    Optimizer.lammps_min = olammps_min
    Optimizer.calc = setup_calculator(Optimizer)
    if indiv.energy == 0:
        indiv.history_index = indiv.history_index + "m" + muttype
    else:
        indiv.history_index = repr(indiv.index) + "m" + muttype
    return indiv
コード例 #3
0
ファイル: quench.py プロジェクト: zhenming-xu/MAST
def quench(indiv, Optimizer):
    """Move function to perform a molecular dynamics NVT quenching of structure
    Inputs:
        indiv = Individual class object to be altered
        Optimizer = Optimizer class object with needed parameters
    Outputs:
        indiv = Altered Individual class object
    """
    if 'MU' in Optimizer.debug:
        debug = True
    else:
        debug = False
    olammps_min = Optimizer.lammps_min
    ocalc = Optimizer.calc
    mincomd = '1.0e-8 1.0e-8 1000 100000\nunfix fix_nve\nfix fix_nvt all nvt temp ' + repr(
        Optimizer.quench_max_temp) + ' ' + repr(
            Optimizer.quench_min_temp) + ' ' + repr(Optimizer.quench_step_size)
    mincomd += '\nrun ' + repr(
        Optimizer.quench_n_steps_1
    ) + '\nunfix fix_nvt\nfix fix_nve all nve\nminimize 1.0e-8 1.0e-8 1000 100000'
    mincomd += '\nunfix fix_nve\nfix fix_nvt all nvt temp ' + repr(
        Optimizer.quench_max_temp) + ' ' + repr(
            Optimizer.quench_min_temp) + ' ' + repr(Optimizer.quench_step_size)
    mincomd += '\nrun ' + repr(
        Optimizer.quench_n_steps_2
    ) + '\nunfix fix_nvt\nfix fix_nve all nve\nminimize 1.0e-8 1.0e-8 1000 100000'
    Optimizer.lammps_min = mincomd
    Optimizer.calc = setup_calculator(Optimizer)
    outs = fitness_switch([Optimizer, indiv])
    indiv = outs[0]
    Optimizer.output.write('Quench NVT Mutation performed on individual\n')
    Optimizer.output.write('Index = ' + repr(indiv.index) + '\n')
    Optimizer.output.write(outs[1])
    Optimizer.output.write('New fitness : ' + repr(indiv.fitness) + '\n')
    muttype = 'Q'
    Optimizer.lammps_min = olammps_min
    Optimizer.calc = setup_calculator(Optimizer)
    if indiv.energy == 0:
        indiv.history_index = indiv.history_index + 'm' + muttype
    else:
        indiv.history_index = repr(indiv.index) + 'm' + muttype
    return indiv
コード例 #4
0
ファイル: TestMutsCx.py プロジェクト: m-yu/MAST
def main():
    from MAST.structopt import Optimizer
    from MAST.structopt import tools
    
    #Test for cluster structures
    parameters = {'structure':'Cluster','optimizer_type': 'GA','atomlist':[('Au', 10, 0, 0), ('Cu', 10, 0, 0)]}
    A = Optimizer(parameters)
    A.algorithm_initialize()
    A.calc = tools.setup_calculator(A)
    offspring = A.generation_set([])
    indiv = offspring[0].duplicate()
    ind1 = offspring[1].duplicate()
    ind2 = offspring[2].duplicate()
    test_mutations(indiv)
    test_cx(ind1,ind2)
    A.close_output()
    
    #Test for defect structures
    parameters = {'structure':'Defect','optimizer_type': 'GA','atomlist':[('Au', 3, 0, 0), ('Cu', 3, 0, 0)],'supercell':(3,3,3),'SolidFile':'BFe.xyz','SolidCell':[8.61, 8.61, 8.61]}
    A = Optimizer(parameters)
    A.algorithm_initialize()
    A.calc = tools.setup_calculator(A)
    offspring = A.generation_set([])
    indiv = offspring[0].duplicate()
    ind1 = offspring[1].duplicate()
    ind2 = offspring[2].duplicate()
    test_mutations(indiv)
    test_cx(ind1,ind2)
    A.close_output()
    
    #Test for crystal structures
    parameters = {'structure':'Crystal','optimizer_type': 'GA','atomlist':[('Au', 10, 0, 0), ('Cu', 10, 0, 0)]}
    A = Optimizer(parameters)
    A.algorithm_initialize()
    A.calc = tools.setup_calculator(A)
    offspring = A.generation_set([])
    indiv = offspring[0].duplicate()
    ind1 = offspring[1].duplicate()
    ind2 = offspring[2].duplicate()
    test_mutations(indiv)
    test_cx(ind1,ind2)
    A.close_output()
コード例 #5
0
 def generation_set(self,pop):
     global logger
     self.calc = tools.setup_calculator(self) #Set up calculator for atomic structures
     #Set up calculator for fixed region calculations
     if self.fixed_region:
         self.static_calc = self.calc #May need to copy this
         self.calc = tools.setup_fixed_region_calculator(self)
     self.output.write('\n-------- Generation '+repr(self.generation)+' --------\n')
     self.files[self.nindiv].write('Generation '+str(self.generation)+'\n')
     if len(pop) == 0:
         logger.info('Initializing structures')
         offspring = self.initialize_structures()
         self.population = offspring
     else:
         for i in range(len(pop)):
             # Reset History index
             pop[i].history_index=repr(pop[i].index)
         # Select the next generation individuals
         offspring = switches.selection_switch(pop, self.nindiv,
                     self.selection_scheme, self)
         # Clone the selected individuals
         offspring=[off1.duplicate() for off1 in offspring]
         # Apply crossover to the offspring
         self.output.write('\n--Applying Crossover--\n')
         cxattempts = 0
         for child1, child2 in zip(offspring[::2], offspring[1::2]):
             if random.random() < self.cxpb:
                 child1,child2 = switches.crossover_switch(child1, child2, self)
                 cxattempts+=2
         self.cxattempts=cxattempts
         #DEBUG: Write first child
         if 'MA' in self.debug: 
             inp_out.write_xyz(self.debugfile,offspring[0][0],'First Child '+
                 repr(offspring[0].history_index))
         # Apply mutation to the offspring
         self.output.write('\n--Applying Mutation--\n')
         mutattempts = []
         muts = []
         for mutant in offspring:
             if random.random() < self.mutpb:
                 if self.mutant_add:
                     mutant = mutant.duplicate()
                 mutant, optsel = switches.moves_switch(mutant,self)
                 mutattempts.append([mutant.history_index,optsel])
                 if self.mutant_add:
                     muts.append(mutant)
         if self.mutant_add:
             offspring.extend(muts)
         self.mutattempts=mutattempts
         #DEBUG: Write first offspring
         if 'MA' in self.debug: 
             inp_out.write_xyz(self.debugfile,muts[0][0],'First Mutant '+\
             repr(muts[0].history_index))
     if 'stem' in self.fitness_scheme:
         if self.stem_coeff==None:
             logger.info('Setting STEM coeff (alpha)')
             ind = offspring.pop()
             from MAST.structopt.tools.StemCalc import find_stem_coeff
             outs = find_stem_coeff(self,ind)
             ind = outs[1]
             ind.fitness = 0
             ind.energy = 0
             self.stem_coeff = outs[0]
             logger.info('STEM Coeff = {0}'.format(self.stem_coeff))
             self.output.write('stem_coeff Calculated to be: '+repr(self.stem_coeff)+'\n')
             offspring.append(ind)
               
     return offspring
コード例 #6
0
 def algorithm_par_mp1(self):
     """Subprogram for running parallel version of GA
     Requires MPI4PY"""
     comm = MPI.COMM_WORLD
     rank = MPI.COMM_WORLD.Get_rank()
     if rank==0:
         if 'MA' in self.debug:
             debug = True
         else:
             debug = False
         self.algorithm_initialize()
     self.convergence = False
     convergence = False
     while not convergence:
         if rank==0:
             self.calc = tools.setup_calculator(self) #Set up calculator for atomic structures
             #Set up calculator for fixed region calculations
             if self.fixed_region:
                 self.static_calc = self.calc #May need to copy this
                 self.calc = tools.setup_fixed_region_calculator(self)
             pop = self.population
             offspring = self.generation_set(self,pop)
             # Identify the individuals with an invalid fitness
             invalid_ind = [ind for ind in offspring if ind.energy==0]
             #Evaluate the individuals with invalid fitness
             self.output.write('\n--Evaluate Structures--\n')
             proc_dist = int(comm.Get_size()/self.n_proc_eval)
             ntimes=int(math.ceil(float(len(invalid_ind))/float(proc_dist)))
             nadd=int(ntimes*proc_dist-len(invalid_ind))
             maplist=[[] for n in range(ntimes)]
             strt=0
             for i in range(len(maplist)):
                 maplist[i]=[[self,indi] for indi in invalid_ind[strt:proc_dist+strt]]
                 strt+=proc_dist
             for i in range(nadd):
                 maplist[len(maplist)-1].append([None,None])
             masterlist = [i*self.n_proc_eval for i in range(proc_dist)]
         else:
             ntimes=None
             masterlist = None
         ntimes = comm.bcast(ntimes,root=0)
         outs=[]
         for i in range(ntimes):
             if rank==0:
                 one=maplist[i]
                 for j in range(len(one)):
                     comm.send(ind, dest=1, tag=11)
             elif rank == 1:
                 ind = comm.recv(source=0, tag=11)
             else:
                 one=None
             ind =comm.scatter(one,root=0)
             out = switches.fitness_switch(ind)
         else:
             invalid_ind=[]
         poorlist = []
         for i in range(len(invalid_ind)):
             if self.fitness_scheme=='STEM_Cost':
                 if self.stem_coeff==None:
                     ind = invalid_ind.pop()
                     from MAST.structopt.tools.StemCalc import find_stem_coeff
                     outs = find_stem_coeff(self,ind)
                     ind = outs[1]
                     self.stem_coeff = outs[0]
                     self.output.write('stem_coeff Calculated to be: '+repr(self.stem_coeff)+'\n')
                     pop.append(ind)
             ind=invalid_ind[i]
             if 'MA' in self.debug: write_xyz(self.debugfile,ind[0],'Individual to fitness_switch')
             outs = switches.fitness_switch([self,ind])
             self.output.write(outs[1])
             invalid_ind[i]=outs[0]
             if invalid_ind[i].energy == float('inf'):
                 poorlist.append(i)
                 self.output.write('Removing infinite energy individual '+repr(ind.history_index)+'\n')
             elif invalid_ind[i].energy == float('nan'):
                 poorlist.append(i)
                 self.output.write('Removing nan energy individual '+repr(ind.history_index)+'\n')
             self.output.flush()
         if len(poorlist) != 0:
             poorlist.sort(reverse=True)
             for one in poorlist:
                 del invalid_ind[one]
         if rank==0:
             pop.extend(invalid_ind)
             pop = self.generation_eval(pop)
         convergence = comm.bcast(self.convergence, root=0)
     
     if rank==0:
         end_signal = self.algorithm_stats(self.population)
     else:
         end_signal = None
     end_signal = comm.bcast(end_signal, root=0)
     return end_signal