def __init__(self, wavfolder, trainingdata):
        """Initialise the classifier and train it on some WAV files.
        'wavfolder' is the base folder, to be prepended to all WAV paths.
        'trainingdata' is a dictionary of wavpath:label pairs."""

        self.mfccMaker = melScaling(int(fs), framelen / 2, 40)
        self.mfccMaker.update()

        self.count = 0
        allfeatures = {
            wavpath: self.file_to_features(os.path.join(wavfolder, wavpath))
            for wavpath in trainingdata
        }

        #print('ALLfeatures:',allfeatures)####checking features###
        np.set_printoptions(threshold=np.nan)
        foobar = open("all_features_together_dataset_13.txt", "w")
        for label, aggf in allfeatures.items():
            foobar.write("\"" + label + "\"")
            foobar.write(str(aggf))
        foobar.close()

        # Determine the normalisation stats, and remember them
        allconcat = np.vstack(list(allfeatures.values(
        )))  #stack arrays in sequence vertically(row wise))
        self.means = np.mean(allconcat, 0)  #compute mean
        self.invstds = np.std(allconcat, 0)  #compute the standard deviation
        for i, val in enumerate(self.invstds):
            if val == 0.0:
                self.invstds[i] = 1.0
            else:
                self.invstds[i] = 1.0 / val

        # For each label, compile a normalised concatenated list of features
        aggfeatures = {}
        for wavpath, features in allfeatures.items():
            label = trainingdata[wavpath]
            normed = self.__normalise(features)
            if label not in aggfeatures:
                aggfeatures[label] = normed
            else:
                aggfeatures[label] = np.vstack((aggfeatures[label], normed))

# For each label's aggregated features, train a GMM and remember it
        self.gmms = {}
        for label, aggf in aggfeatures.items():
            if verbose:
                print(
                    "    Training a GMM for label %s, using data of shape %s" %
                    (label, str(np.shape(aggf))))
            self.gmms[label] = GMM(n_components=2)  # , cvtype='full')
            self.gmms[label].fit(aggf)
        if verbose:
            print("  Trained %i classes from %i input files" %
                  (len(self.gmms), len(trainingdata)))
コード例 #2
0
    def __init__(self, wavfolder, trainingdata):
        """Initialise the classifier and train it on some WAV files.
		'wavfolder' is the base folder, to be prepended to all WAV paths.
		'trainingdata' is a dictionary of wavpath:label pairs."""

        self.mfccMaker = melScaling(int(fs), framelen / 2, 40)
        self.mfccMaker.update()

        allfeatures = {
            wavpath: self.file_to_features(os.path.join(wavfolder, wavpath))
            for wavpath in trainingdata
        }

        # Determine the normalisation stats, and remember them
        allconcat = np.vstack(list(allfeatures.values()))
        self.means = np.mean(allconcat, 0)
        self.invstds = np.std(allconcat, 0)
        for i, val in enumerate(self.invstds):
            if val == 0.0:
                self.invstds[i] = 1.0
            else:
                self.invstds[i] = 1.0 / val

        # For each label, compile a normalised concatenated list of features
        aggfeatures = {}
        for wavpath, features in allfeatures.items():
            label = trainingdata[wavpath]
            normed = self.__normalise(features)
            if label not in aggfeatures:
                aggfeatures[label] = normed
            else:
                aggfeatures[label] = np.vstack((aggfeatures[label], normed))

        # For each label's aggregated features, train a GMM and remember it
        self.GaussianMixtures = {}
        for label, aggf in aggfeatures.items():
            if verbose:
                print(
                    "    Training a GMM for label %s, using data of shape %s" %
                    (label, str(np.shape(aggf))))
            self.GaussianMixtures[label] = GaussianMixture(
                n_components=10)  # , cvtype='full')
            self.GaussianMixtures[label].fit(aggf)
        if verbose:
            print("  Trained %i classes from %i input files" %
                  (len(self.GaussianMixtures), len(trainingdata)))
コード例 #3
0
ファイル: gmmfl.py プロジェクト: bhavdeep98/Audio-project
    def __init__(self, wavfolder, trainingdata):
        """Initialise the classifier and train it on some WAV files.
        'wavfolder' is the base folder, to be prepended to all WAV paths.
        'trainingdata' is a dictionary of wavpath:label pairs."""

        self.mfccMaker = melScaling(int(fs), framelen/2, 40)
        self.mfccMaker.update()

        allfeatures = {wavpath:self.file_to_features(os.path.join(wavfolder, wavpath)) for wavpath in trainingdata}

        ###print('ALLfeatures:',allfeatures)####checking features###
        # Determine the normalisation stats, and remember them
        allconcat = np.vstack(list(allfeatures.values()))#stack arrays in sequence vertically(row wise))
        self.means = np.mean(allconcat, 0)#compute mean
        self.invstds = np.std(allconcat, 0)#compute the standard deviation
        for i,val in enumerate(self.invstds):
            if val == 0.0:
                self.invstds[i] = 1.0
            else:
                self.invstds[i] = 1.0 / val

        # For each label, compile a normalised concatenated list of features
        aggfeatures = {}
        for wavpath, features in allfeatures.items():
            label = trainingdata[wavpath]
            normed = self.__normalise(features)
            if label not in aggfeatures:
                aggfeatures[label] = normed
            else:
                aggfeatures[label] = np.vstack((aggfeatures[label], normed))

        # For each label's aggregated features, train a GMM and remember it
        self.gmms = {}
        for label, aggf in aggfeatures.items():
            if verbose: print("    Training a GMM for label %s, using data of shape %s" % (label, str(np.shape(aggf))))
            self.gmms[label] = GMM(n_components=10) # , cvtype='full')
            self.gmms[label].fit(aggf)
        if verbose: print("  Trained %i classes from %i input files" % (len(self.gmms), len(trainingdata)))
 def __init__(self):
     self.mfccMaker = melScaling(int(fs), framelen / 2, 40)
     self.mfccMaker.update()
 def __init__(self):
     self.mfccMaker = melScaling(int(fs), framelen/2, 40)
     self.mfccMaker.update()
コード例 #6
0
ファイル: svm.py プロジェクト: vijdinesh/Audio-project
    def __init__(self, wavfolder, trainingdata):
        """Initialise the classifier and train it on some WAV files.
        'wavfolder' is the base folder, to be prepended to all WAV paths.
        'trainingdata' is a dictionary of wavpath:label pairs."""

        self.mfccMaker = melScaling(int(fs), framelen / 2, 40)
        self.mfccMaker.update()

        self.target = {}
        self.labelarr = []
        self.labelarr2 = {}
        self.labelarr3 = {}
        self.target2 = []
        i = 0
        for wavpath in trainingdata:
            label = trainingdata[wavpath]
            if label not in self.labelarr2.values():
                print "    target classes :" + label
                self.labelarr.append(i)
                self.labelarr2[i] = label
                self.labelarr3[label] = i
                i = i + 1
            else:
                self.labelarr.append(self.labelarr3[label])

        allfeatures = {
            wavpath: self.file_to_features(os.path.join(wavfolder, wavpath), trainingdata[wavpath])
            for wavpath in trainingdata
        }

        # print("**********features  :",self.file_to_features(os.path.join(wavfolder,wavpath)))
        print ("allfeatures :" + str(np.shape(allfeatures.values())))
        # print("target :",self.target2)

        print ("target values", self.labelarr)
        print ("target labels", self.labelarr2)
        ###print('ALLfeatures:',allfeatures)####checking features###
        # Determine the normalisation stats, and remember them
        allconcat = np.vstack(list(allfeatures.values()))  # stack arrays in sequence vertically(row wise))
        self.means = np.mean(allconcat, 0)  # compute mean
        self.invstds = np.std(allconcat, 0)  # compute the standard deviation
        for i, val in enumerate(self.invstds):
            if val == 0.0:
                self.invstds[i] = 1.0
            else:
                self.invstds[i] = 1.0 / val

        # For each label, compile a normalised concatenated list of features
        aggfeatures = {}
        for wavpath, features in allfeatures.items():
            label = trainingdata[wavpath]
            normed = self.__normalise(features)
            if label not in aggfeatures:
                aggfeatures[label] = normed
            else:
                aggfeatures[label] = np.vstack((aggfeatures[label], normed))

        # For each label's aggregated features, train a SVM and remember it
        # self.svms = {}
        self.X = []
        for label, aggf in aggfeatures.items():
            if verbose:
                print ("      Training a SVM for label %s, using data of shape %s" % (label, str(np.shape(aggf))))
            # self.svms[label] = svm.SVC()
            # print("aggf : ",aggf)
            if not np.any(self.X):
                self.X = aggf
            else:
                # print("X: ",np.shape(self.X))
                # print("aggf: ",np.shape(aggf))
                self.X = np.vstack((self.X, aggf))
            # self.svms[label].fit(aggf,self.target[label])
        # print("X :",self.X)
        self.clf = svm.SVC()
        # print("target : ",self.target2)
        self.clf.fit(self.X, self.target2)
コード例 #7
0
ファイル: svm6.py プロジェクト: bhavdeep98/Audio-project
    def __init__(self, wavfolder, trainingdata):
        """Initialise the classifier and train it on some WAV files.
        'wavfolder' is the base folder, to be prepended to all WAV paths.
        'trainingdata' is a dictionary of wavpath:label pairs."""
 	#open audio file as an AudioFile object
        for wavpath in trainingdata:
            audio_file = open((os.path.join(wavfolder, wavpath)))
            file_info=self.get_info(audio_file)

            #Creates a WaveReader object from the AudioFile Object
            pcm_data = audio_file.to_pcm()

            #Creates a FrameList object from WaveReader object. Currently reads all
            #frames in file
            frame_list = pcm_data.read(file_info["frames"])

            #Convert samples to floats (-1.0 - +1.0)
            float_frame_list = frame_list.to_float()

            #eventually do some signal processing here...

            #Convert back to integer FrameList
            output_framelist = float_frame_list.to_int(file_info["bits"])

            #now back to raw bytes
            output_data = output_framelist.to_bytes(False, True)
        
	self.mfccMaker = melScaling(int(fs), framelen/2, 40)
        self.mfccMaker.update()

        self.target={}
        self.labelarr=[]
        self.labelarr2={}
        self.labelarr3={}
        self.target2=[]
        i=0
        for wavpath in trainingdata:
            label = trainingdata[wavpath]
            if label not in self.labelarr2.values():
                print "    target classes :"+label
                self.labelarr.append(i)
                self.labelarr2[i]=label
                self.labelarr3[label]=i
                i=i+1
            else:
                self.labelarr.append(self.labelarr3[label])

        allfeatures = {wavpath:self.file_to_features(os.path.join(wavfolder, wavpath),trainingdata[wavpath]) for wavpath in trainingdata}

        #print("**********features  :",self.file_to_features(os.path.join(wavfolder,wavpath)))
        print("allfeatures :"+str(np.shape(allfeatures.values())))
        #print("target :",self.target2)


        print('target values', self.labelarr)
        print('target labels', self.labelarr2)
        ###print('ALLfeatures:',allfeatures)####checking features###
        # Determine the normalisation stats, and remember them
        allconcat = np.vstack(list(allfeatures.values()))#stack arrays in sequence vertically(row wise))
        self.means = np.mean(allconcat, 0)#compute mean
        self.invstds = np.std(allconcat, 0)#compute the standard deviation
        for i,val in enumerate(self.invstds):
            if val == 0.0:
                self.invstds[i] = 1.0
            else:
                self.invstds[i] = 1.0 / val

        # For each label, compile a normalised concatenated list of features
        aggfeatures = {}
        for wavpath, features in allfeatures.items():
            label = trainingdata[wavpath]
            normed = self.__normalise(features)
            if label not in aggfeatures:
                aggfeatures[label] = normed
            else:
                aggfeatures[label] = np.vstack((aggfeatures[label], normed))

        # For each label's aggregated features, train a SVM and remember it
        #self.svms = {}
        self.X=[]
        for label, aggf in aggfeatures.items():
            if verbose: print("      Training a SVM for label %s, using data of shape %s" % (label, str(np.shape(aggf))))
            #self.svms[label] = svm.SVC()
            #print("aggf : ",aggf)
            if not np.any(self.X):
                self.X=aggf
            else:
                #print("X: ",np.shape(self.X))
                #print("aggf: ",np.shape(aggf))
                self.X=np.vstack((self.X,aggf))
            #self.svms[label].fit(aggf,self.target[label])
        #print("X :",self.X)
        self.clf=svm.SVC()
        #print("target : ",self.target2)
        self.clf.fit(self.X,self.target2)
コード例 #8
0
ファイル: gmmfl4.py プロジェクト: bhavdeep98/Audio-project
    def __init__(self, wavfolder, trainingdata):
        """Initialise the classifier and train it on some WAV files.
        'wavfolder' is the base folder, to be prepended to all WAV paths.
        'trainingdata' is a dictionary of wavpath:label pairs."""

        #open audio file as an AudioFile object
        for wavpath in trainingdata:
            audio_file = open((os.path.join(wavfolder, wavpath)))
            file_info=self.get_info(audio_file)

            #Creates a WaveReader object from the AudioFile Object
            pcm_data = audio_file.to_pcm()

            #Creates a FrameList object from WaveReader object. Currently reads all
            #frames in file
            frame_list = pcm_data.read(file_info["frames"])

            #Convert samples to floats (-1.0 - +1.0)
            float_frame_list = frame_list.to_float()

            #eventually do some signal processing here...

            #Convert back to integer FrameList
            output_framelist = float_frame_list.to_int(file_info["bits"])

            #now back to raw bytes
            output_data = output_framelist.to_bytes(False, True)

        self.mfccMaker = melScaling(int(fs), framelen/2, 40)
        self.mfccMaker.update()

        allfeatures = {wavpath:self.file_to_features(os.path.join(wavfolder, wavpath)) for wavpath in trainingdata}

        ###print('ALLfeatures:',allfeatures)####checking features###
        # Determine the normalisation stats, and remember them
        allconcat = np.vstack(list(allfeatures.values()))#stack arrays in sequence vertically(row wise))
        self.means = np.mean(allconcat, 0)#compute mean
        self.invstds = np.std(allconcat, 0)#compute the standard deviation
        for i,val in enumerate(self.invstds):
            if val == 0.0:
                self.invstds[i] = 1.0
            else:
                self.invstds[i] = 1.0 / val

        # For each label, compile a normalised concatenated list of features
        aggfeatures = {}
        for wavpath, features in allfeatures.items():
            label = trainingdata[wavpath]
            normed = self.__normalise(features)
            if label not in aggfeatures:
                aggfeatures[label] = normed
            else:
                aggfeatures[label] = np.vstack((aggfeatures[label], normed))

        # For each label's aggregated features, train a GMM and remember it
        self.gmms = {}
        for label, aggf in aggfeatures.items():
            if verbose: print("    Training a GMM for label %s, using data of shape %s" % (label, str(np.shape(aggf))))
            self.gmms[label] = GMM(n_components=10) # , cvtype='full')
            self.gmms[label].fit(aggf)
        if verbose: print("  Trained %i classes from %i input files" % (len(self.gmms), len(trainingdata)))