#bags,labels,_ = load_data('tiger_scaled') #bags,labels,_ = load_data('elephant_scaled') bags, labels, _ = load_data('data_gauss') #Shuffle Data bags, labels = shuffle(bags, labels, random_state=rand.randint(0, 100)) #Number of Folds folds = 5 bow_classifier = BOW() #parameters_bow = {'k':100,'covar_type':'diag','n_iter':20} parameters_bow = {'k': 10, 'covar_type': 'diag', 'n_iter': 20} accuracie, results_accuracie, auc, results_auc = mil_cross_val( bags=bags, labels=labels, model=bow_classifier, folds=folds, parameters=parameters_bow) SMILa = simpleMIL() parameters_smil = {'type': 'max'} #En este me funciono maxDD porque no tiene problem con parametros accuracie, results_accuracie, auc, results_auc, elapsed = mil_cross_val( bags=bags, labels=labels, model=SMILa, folds=folds, parameters=parameters_smil, timer=True) parameters_smil = {'type': 'min'}
# accuracie, results_accuracie, auc,results_auc, elapsed = mil_cross_val(bags=bags,labels=labels.ravel(), model=maxDD_classifier, folds=folds,parameters={}, timer=True) ## print '\n'+'AUC: ' + str(auc)+'\n'+'Accuracie: '+ str(accuracie)+'\n'+'Elapsed: '+ str(round(elapsed,2)) # AUC.append(auc) # ACCURACIE.append(accuracie) # print '\n MEAN AUC: '+ str(np.mean(AUC)) + '\n MEAN ACCURACIE: '+ str(np.mean(ACCURACIE)) emdd_classifier = EMDD() print '\n========= EM-DD RESULT =========' AUC = [] ACCURACIE = [] for i in range(runs): # print '\n run #'+ str(i) bags, labels = shuffle(bags, labels, random_state=rand.randint(0, 100)) accuracie, results_accuracie, auc, results_auc, elapsed = mil_cross_val( bags=bags, labels=labels.ravel(), model=emdd_classifier, folds=folds, parameters={}, timer=True) # print '\n'+'AUC: ' + str(auc)+'\n'+'Accuracie: '+ str(accuracie)+'\n'+'Elapsed: '+ str(round(elapsed,2)) AUC.append(auc) ACCURACIE.append(accuracie) print '\n MEAN AUC: ' + str(np.mean(AUC)) + '\n MEAN ACCURACIE: ' + str( np.mean(ACCURACIE)) milboost_classifier = MILBoost() print '\n========= MILBOOST RESULT =========' AUC = [] ACCURACIE = [] for i in range(runs): # print '\n run #'+ str(i) bags, labels = shuffle(bags, labels, random_state=rand.randint(0, 100))
from MILpy.Algorithms.EMDD import EMDD from MILpy.Algorithms.MILES import MILES from MILpy.Algorithms.BOW import BOW bags, labels, X = load_data('musk2_scaled') folds = 5 runs = 1 print(labels) cknn_classifier = CKNN() parameters_cknn = {'references': 3, 'citers': 5} print '\n========= CKNN RESULT =========' AUC = [] ACCURACIE = [] for i in range(runs): print '\n run #' + str(i) bags, labels = shuffle(bags, labels, random_state=rand.randint(0, 100)) accuracie, results_accuracie, auc, results_auc, elapsed = mil_cross_val( bags=bags, labels=labels.ravel(), model=cknn_classifier, folds=folds, parameters=parameters_cknn, timer=True) print '\n' + 'AUC: ' + str(auc) + '\n' + 'Accuracie: ' + str( accuracie) + '\n' + 'Elapsed: ' + str(round(elapsed, 2)) AUC.append(auc) ACCURACIE.append(accuracie) print '\n MEAN AUC: ' + str(np.mean(AUC)) + '\n MEAN ACCURACIE: ' + str( np.mean(ACCURACIE))