def working_k_fold_cross_easy(): #Read data MLobj = EasyClassi() MLobj.read("Social_Network_Ads.csv") #Prepare data MLobj.explore() MLobj.split_X_y() MLobj.X = MLobj.X[:, 2:4] MLobj.split_ds(test_set=1 / 4) MLobj.scale_features(scaleY=False) #Classification MLobj.fitKernelSVM() #Predict y_pred = MLobj.predict() #Evaluation confusion matrix cm = MLobj.create_confusion_matrix() #Applying K-Fold Cross validation MLobj.apply_class_k_fold() MLobj.print_k_fold_perf()
def working_grid_search(): #Read data MLobj = EasyClassi() MLobj.read("Social_Network_Ads.csv") #Prepare data MLobj.explore() MLobj.split_X_y() MLobj.X = MLobj.X[:, 2:4] MLobj.split_ds(test_set=1 / 4) MLobj.scale_features(scaleY=False) #Classification MLobj.fitKernelSVM() #Predict y_pred = MLobj.predict() #Evaluation confusion matrix cm = MLobj.create_confusion_matrix() #Applying K-Fold Cross validation MLobj.apply_class_k_fold() MLobj.print_k_fold_perf() #Apply grid search to find the best model and best parameters from sklearn.model_selection import GridSearchCV parameters = [{ 'C': [1, 10, 100, 1000], "kernel": ["linear"] }, { 'C': [1, 10, 100, 1000], "kernel": ["rbf"], "gamma": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] }] grid_search = GridSearchCV(estimator=MLobj.classifier, param_grid=parameters, scoring="accuracy", cv=10, n_jobs=-1) grid_search = grid_search.fit(MLobj.X_train, MLobj.y_train) best_accuracy = grid_search.best_score_ best_parameters = grid_search.best_params_
def working_grid_search_easy(): #Read data MLobj = EasyClassi() MLobj.read("Social_Network_Ads.csv") #Prepare data MLobj.explore() MLobj.split_X_y() MLobj.X = MLobj.X[:, 2:4] MLobj.split_ds(test_set=1 / 4) MLobj.scale_features(scaleY=False) #Classification MLobj.fitKernelSVM() #Predict y_pred = MLobj.predict() #Evaluation confusion matrix cm = MLobj.create_confusion_matrix() #Applying K-Fold Cross validation MLobj.apply_class_k_fold() MLobj.print_k_fold_perf() #Apply grid search to find the best model and best parameters parameters = [{ 'C': [1, 10, 100, 1000], "kernel": ["linear"] }, { 'C': [1, 10, 100, 1000], "kernel": ["rbf"], "gamma": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] }] MLobj.apply_grid_search(paramsGS=parameters) MLobj.print_grid_search_perf()