def image_generation(us_mlp, s, w, h, file_name): in_vect= [0.0, 0.0, 0.0, 0.0] out_vect=[0.0,0.0,0.0] in_vect[2]= s[0]*(max_0-min_0)+min_0 in_vect[3]= s[1]*(max_1-min_1)+min_1 svg = MYSVGWriter(640, 480, 0, 0, w, h) for y in range(h): in_vect[1] = 1.0* y/h for x in range(w): in_vect[0] = 1.0*x/w out_vect = us_mlp.predict(in_vect) svg.rect(x, h - 1 - y, 1, 1, rgbToUint(out_vect[0] * 255, out_vect[1] * 255, out_vect[2] * 255)); svg.svgprint(file_name+'.svg')
def plot_intrinsic(X, w, h): svg = MYSVGWriter(640, 480, -100, -100, 100, 100) x_prev, y_prev = None, None for row in X: x= 10**1*row[0] #to scale data y= 10**1*row[1] #to scale data svg.dot(x ,y,1, 0x008080) if x_prev and y_prev: svg.line(x_prev, y_prev, x, y, .05, 0xc0c0c0) x_prev=x y_prev=y svg.svgprint("intrinsic.svg")
if __name__ == '__main__': matrix, cat_cols, nom_cols = read_data('data/credit-a.arff') num_folds=3 nfold = NFoldValidation(matrix, cat_cols, nom_cols,num_folds) print 'total error in linear regression:', nfold.run() components=5 pca02= PCA02(matrix, cat_cols, nom_cols, components) pca02.train() #plot3.svg svg = MYSVGWriter(500, 500, 0, 0, 100, 100) start_position=4 for i in range(len( pca02.eigenvalues)): svg.rect(start_position, 0, 3, 27*pca02.eigenvalues[i] , 0x008080) start_position+= 4 # print pca02.eigenvalues svg.svgprint("plot3.svg") #plot4.svg svg = MYSVGWriter(500, 500, -100, -100, 110, 110) start_position=10 for i in range(len( pca02.matrix)): row = pca02.matrix[i] reduced= pca02.reduce(row[:len(row)], 2) x= 10**17*reduced[0]#to scale data