def test_christ_flat(): """now test that christofel preserve metrics: on the flat space d_xi <v M v> = 2 <v M nabla_xi v> v = proj(W) @ (aa W + b) """ dvec = np.array([10, 3, 2, 3]) p = dvec.shape[0] - 1 alpha = randint(1, 10, (p, p + 1)) * .1 man = ComplexFlag(dvec, alpha=alpha) Y = man.rand() n = man.n d = man.d xi = man.randvec(Y) aa = crandn(n * d, n * d) bb = crandn(n * d) def v_func_flat(Y): return (aa @ Y.reshape(-1) + bb).reshape(n, d) vv = v_func_flat(Y) dlt = 1e-7 Ynew = Y + dlt * xi vnew = v_func_flat(Ynew) val = man.inner(Y, vv, vv) valnew = man.inner(Ynew, vnew, vnew) d1 = (valnew - val) / dlt dv = (vnew - vv) / dlt nabla_xi_v = dv + man.g_inv(Y, man.christoffel_form(Y, xi, vv)) d2 = man.inner(Y, vv, nabla_xi_v) print(d1) print(2 * d2)
def test_rhess_02(): np.random.seed(0) dvec = np.array([10, 3, 2, 3]) p = dvec.shape[0] - 1 alpha = randint(1, 10, (p, p + 1)) * .1 man = ComplexFlag(dvec, alpha=alpha) n = man.n d = man.d Y = man.rand() UU = {} p = alpha.shape[0] VV = {} gidx = man._g_idx for rr in range(p): UU[rr] = make_sym_pos(n) VV[rr] = crandn(n, dvec[rr + 1]) def f(Y): ss = 0 for rr in range(p): br, er = gidx[rr + 1] wr = Y[:, br:er] ss += trace(UU[rr] @ wr @ wr.T.conjugate()).real return ss def df(W): ret = np.zeros_like(W) for rr in range(p): br, er = gidx[rr + 1] wr = W[:, br:er] ret[:, br:er] += 2 * UU[rr] @ wr return ret def ehess_form(W, xi, eta): ss = 0 for rr in range(p): br, er = gidx[rr + 1] ss += 2 * trace( UU[rr] @ xi[:, br:er] @ eta[:, br:er].T.conjugate()).real return ss def ehess_vec(W, xi): ret = np.zeros_like(W) for rr in range(p): br, er = gidx[rr + 1] ret[:, br:er] += 2 * UU[rr] @ xi[:, br:er] return ret xxi = crandn(n, d) dlt = 1e-8 Ynew = Y + dlt * xxi d1 = (f(Ynew) - f(Y)) / dlt d2 = df(Y) print(d1 - trace(d2 @ xxi.T.conjugate()).real) eeta = crandn(n, d) d1 = trace((df(Ynew) - df(Y)) @ eeta.T.conjugate()).real / dlt ehess_val = ehess_form(Y, xxi, eeta) # ehess_val2 = ehess_form(Y, eeta, xxi) dv2 = ehess_vec(Y, xxi) print(trace(dv2 @ eeta.T.conjugate()).real) print(d1, ehess_val, d1 - ehess_val) # now check the formula: ehess = xi (eta_func(f)) - <D_xi eta, df(Y)> # promote eta to a vector field. m1 = crandn(n, n) m2 = crandn(d, d) def eta_field(Yin): return m1 @ (Yin - Y) @ m2 + eeta # xietaf: should go to ehess(xi, eta) + df(Y) @ etafield) xietaf = trace( df(Ynew) @ eta_field(Ynew).T.conjugate() - df(Y) @ eta_field(Y).T.conjugate()).real / dlt # appy eta_func to f: should go to tr(m1 @ xxi @ m2 @ df(Y).T.conjugate()) Dxietaf = trace( (eta_field(Ynew) - eta_field(Y)) @ df(Y).T.conjugate()).real / dlt # this is ehess. should be same as d1 or ehess_val print(xietaf - Dxietaf) print(xietaf - Dxietaf - ehess_val) # now check: rhess. Need to make sure xi, eta in the tangent space. # first compare this with numerical differentiation xi1 = man.proj(Y, xxi) eta1 = man.proj(Y, eeta) egvec = df(Y) ehvec = ehess_vec(Y, xi1) rhessvec = man.ehess2rhess(Y, egvec, ehvec, xi1) # check it numerically: def rgrad_func(Y): return man.proj_g_inv(Y, df(Y)) val2, _, _ = calc_covar_numeric(man, Y, xi1, rgrad_func) val2_p = man.proj(Y, val2) # print(rhessvec) # print(val2_p) print(check_zero(rhessvec - val2_p)) rhessval = man.inner(Y, rhessvec, eta1) print(man.inner(Y, val2, eta1)) print(rhessval) # check symmetric: ehvec_e = ehess_vec(Y, eta1) ehess_valp = ehess_form(Y, xi1, eta1) rhessvec_e = man.ehess2rhess(Y, egvec, ehvec_e, eta1) rhessval_e = man.inner(Y, rhessvec_e, xi1) rhessval_e1 = man.rhess02(Y, xi1, eta1, egvec, ehess_valp) # rhessval_e2 = man.rhess02_alt(Y, xi1, eta1, egvec, # trace([email protected]()).real) # print(rhessval_e, rhessval_e1, rhessval_e2) print(rhessval_e, rhessval_e1, rhessval_e - rhessval_e1) print('rhessval_e %f ' % rhessval_e) # the above computed inner_prod(Nabla_xi Pi * df, eta) # in the following check. Extend eta1 to eta_proj # (Pi Nabla_hat Pi g_inv df, g eta) # = D_xi (Pi g_inv df, g eta) - (Pi g_inv df g Pi Nabla_hat eta) def eta_proj(Y): return man.proj(Y, eta_field(Y)) print(check_zero(eta1 - eta_proj(Y))) e1 = man.inner(Y, man.proj_g_inv(Y, df(Y)), eta_proj(Y)) e1a = trace(df(Y) @ eta_proj(Y).T.conjugate()).real print(e1, e1a, e1 - e1a) Ynew = Y + xi1 * dlt e2 = man.inner(Ynew, man.proj_g_inv(Ynew, df(Ynew)), eta_proj(Ynew)) e2a = trace(df(Ynew) @ eta_proj(Ynew).T.conjugate()).real print(e2, e2a, e2 - e2a) first = (e2 - e1) / dlt first1 = trace( df(Ynew) @ eta_proj(Ynew).T.conjugate() - df(Y) @ eta_proj(Y).T.conjugate()).real / dlt print(first - first1) val3, _, _ = calc_covar_numeric(man, Y, xi1, eta_proj) second = man.inner(Y, man.proj_g_inv(Y, df(Y)), man.proj(Y, val3)) second2 = man.inner(Y, man.proj_g_inv(Y, df(Y)), val3) print(second, second2, second - second2) print('same as rhess_val %f' % (first - second))
def test_all_projections(): dvec = np.array([10, 3, 2, 3]) p = dvec.shape[0] - 1 alpha = randint(1, 10, (p, p + 1)) * .1 man = ComplexFlag(dvec, alpha=alpha) Y = man.rand() U = man._rand_ambient() Upr = man.proj(Y, U) test_inner(man, Y) test_J(man, Y) # now check metric, Jst etc # check Jst: vectorize the operator J then compare Jst with jmat.T.conjugate() jmat = make_j_mat(man, Y) test_Jst(man, Y, jmat) ginv_mat = make_g_inv_mat(man, Y) # test g_inv_Jst for ii in range(10): a = man._rand_range_J() avec = man._vec_range_J(a) jtout = man._unvec(ginv_mat @ jmat.T @ avec) jtout2 = man.g_inv_Jst(Y, a) diff = check_zero(jtout - jtout2) print(diff) # test projection test_projection(man, Y) for i in range(20): Uran = man._rand_ambient() Upr = man.proj(Y, man.g_inv(Y, Uran)) Upr2 = man.proj_g_inv(Y, Uran) print(check_zero(Upr - Upr2)) for ii in range(10): a = man._rand_range_J() xi = man._rand_ambient() jtout2 = man.Jst(Y, a) dlt = 1e-7 Ynew = Y + dlt * xi jtout2a = man.Jst(Ynew, a) d1 = (jtout2a - jtout2) / dlt d2 = man.D_Jst(Y, xi, a) print(check_zero(d2 - d1)) for ii in range(10): Y = man.rand() eta = man._rand_ambient() xi = man.randvec(Y) a1 = man.J(Y, eta) dlt = 1e-7 Ynew = Y + dlt * xi a2 = man.J(Ynew, eta) d1 = (man._vec_range_J(a2) - man._vec_range_J(a1)) / dlt d2 = man._vec_range_J(man.D_J(Y, xi, eta)) print(check_zero(d2 - d1)) for ii in range(10): a = man._rand_range_J() xi = man._rand_ambient() jtout2 = man.g_inv_Jst(Y, a) dlt = 1e-7 Ynew = Y + dlt * xi jtout2a = man.g_inv_Jst(Ynew, a) d1 = (jtout2a - jtout2) / dlt d2 = man.D_g_inv_Jst(Y, xi, a) print(check_zero(d2 - d1)) for ii in range(10): arand = man._rand_range_J() a2 = man.solve_J_g_inv_Jst(Y, arand) a1 = man.J(Y, man.g_inv_Jst(Y, a2)) print(check_zero(man._vec_range_J(a1) - man._vec_range_J(arand))) # derives for ii in range(10): Y1 = man.rand() xi = man.randvec(Y1) omg1 = man._rand_ambient() omg2 = man._rand_ambient() dlt = 1e-7 Y2 = Y1 + dlt * xi p1 = man.inner(Y1, omg1, omg2) p2 = man.inner(Y2, omg1, omg2) der1 = (p2 - p1) / dlt der2 = man.base_inner_ambient(man.D_g(Y1, xi, omg2), omg1) print(check_zero(der1 - der2)) # cross term for christofel for i in range(10): Y1 = man.rand() xi = man.randvec(Y1) omg1 = man._rand_ambient() omg2 = man._rand_ambient() dr1 = man.D_g(Y1, xi, omg1) x12 = man.contract_D_g(Y1, omg1, omg2) p1 = trace(dr1 @ omg2.T.conjugate()).real p2 = trace(x12 @ xi.T.conjugate()).real print(p1, p2, p1 - p2) # now test christofel: # two things: symmetric on vector fields # and christofel relation # in the case metric for i in range(10): Y1 = man.rand() xi = man.randvec(Y1) eta1 = man.randvec(Y1) eta2 = man.randvec(Y1) p1 = man.proj_g_inv(Y1, man.christoffel_form(Y1, xi, eta1)) p2 = man.proj_g_inv(Y1, man.christoffel_form(Y1, eta1, xi)) print(check_zero(p1 - p2)) v1 = man.base_inner_ambient(man.christoffel_form(Y1, eta1, eta2), xi) v2 = man.base_inner_ambient(man.D_g(Y1, eta1, eta2), xi) v3 = man.base_inner_ambient(man.D_g(Y1, eta2, eta1), xi) v4 = man.base_inner_ambient(man.D_g(Y1, xi, eta1), eta2) print(v1, 0.5 * (v2 + v3 - v4), v1 - 0.5 * (v2 + v3 - v4)) """