###### Planck base : on doit obtenir les memes plots que dans PlanckXVI fig2 page 10 from McMc import data_base_planck_lowl_lowLike as data_planck reload(data_planck) niter=30000 nburn=10000 nthin=10 reload(mcmc) reload(cosmo_utils) library='jc' variables=['h','omega_M_0','omega_b_0'] flat=True ### Planck Planck=pymc.MCMC(mcmc.generic_model([data_planck],variables=variables,library=library,flat=flat)) Planck.use_step_method(pymc.AdaptiveMetropolis,Planck.stochastics,delay=1000) Planck.sample(iter=niter,burn=nburn,thin=nthin) obh2=Planck.trace('omega_b_0')[:]*Planck.trace('h')[:]**2 och2=(Planck.trace('omega_M_0')[:]-Planck.trace('omega_b_0')[:])*Planck.trace('h')[:]**2 ol=Planck.trace('omega_lambda_0')[:] h=Planck.trace('h')[:] om=Planck.trace('omega_M_0')[:] ok=Planck.trace('omega_k_0') clf() subplot(2,2,1) xlim(0.02,0.025) ylim(0.60,0.82)
from McMc import data_DR7 reload(data_DR7) from McMc import data_Beutler reload(data_Beutler) from McMc import data_Anderson reload(data_Anderson) niter=3000000 nburn=10000 nthin=10 reload(mcmc) library='jc' model='LambdaCDM' variables=['h','omega_M_0','omega_lambda_0'] ### LYA+h BAOh=pymc.MCMC(mcmc.generic_model([data_lyaDR11,data_hPlanck],variables=variables,library=library),db='pickle',dbname='BAOh_'+model+'_'+library+'.db') BAOh.use_step_method(pymc.AdaptiveMetropolis,BAOh.stochastics,delay=1000) BAOh.sample(iter=niter,burn=nburn,thin=nthin) BAOh.db.close() ### DR7+h DR7h=pymc.MCMC(mcmc.generic_model([data_DR7,data_hPlanck],variables=variables,library=library),db='pickle',dbname='BAOh_'+model+'_'+library+'.db') DR7h.use_step_method(pymc.AdaptiveMetropolis,DR7h.stochastics,delay=1000) DR7h.sample(iter=niter,burn=nburn,thin=nthin) DR7h.db.close() ### Beutler+h Beutlerh=pymc.MCMC(mcmc.generic_model([data_Beutler,data_hPlanck],variables=variables,library=library),db='pickle',dbname='BAOh_'+model+'_'+library+'.db') Beutlerh.use_step_method(pymc.AdaptiveMetropolis,Beutlerh.stochastics,delay=1000) Beutlerh.sample(iter=niter,burn=nburn,thin=nthin) Beutlerh.db.close()