コード例 #1
0
def check_neuron(neuron):
    """
    Check the features of the neurons.

    Parameters:
    -----------
    neuron: Neuron
        The neuron to be checked.

    Returns:
    warnings if some features are not correct.
    """
    cor = 1
    n = Neuron(input_file=get_swc_matrix(neuron),
               input_format='Matrix of swc without Node class')
    n.fit()
    list_features = neuron.features.keys()
    for f in range(len(list_features)):
        # if list_features[f] == 'curvature':
        #     print(n.features[list_features[f]])
        #     print(neuron.features[list_features[f]])
        #     print(n.features[list_features[f]] - neuron.features[list_features[f]])
        if len(n.features[list_features[f]]) -  \
                len(neuron.features[list_features[f]]) != 0:
            print("The size of feature " + list_features[f] +
                  " is not calculated correctly.")
            cor = 0
        else:
            a = n.features[list_features[f]] - neuron.features[
                list_features[f]]
            if list_features[f] == 'branch_angle' or list_features[
                    f] == 'side_branch_angle':
                a = np.sort(n.features[list_features[f]], axis=0) - \
                    np.sort(neuron.features[list_features[f]], axis=0)
            a = a**2
            # if list_features[f] == 'curvature':
            #     print(n.features[list_features[f]])
            #     print(neuron.features[list_features[f]])
            #     print(a.sum())
            if (a.sum() > 0.):
                print("The feature " + list_features[f] +
                      " is not calculated correctly.")
                cor = 0
コード例 #2
0
    def read_file(self, input_format, input_file):
        if(input_format == 'Matrix of swc'):
            self.index = np.array([])
            index = -1
            for neuron in input_file:
                try:
                    index += 1
                    m = subsample.fast_straigthen_subsample_swc(neuron, self.len_subsampling)
                    n = Neuron(input_format=input_format, input_file=m)
                    n.fit()
                    self.index = np.append(self.index, index)
                    self.database.append(n)
                    print index
                except:
                    print('ERROR IN:')
                    print index

        if(input_format == 'Matrix of swc without Node class'):
            self.index = np.array([])
            index = -1
            for neuron in input_file:
                try:
                    index += 1
                    m = subsample.fast_straigthen_subsample_swc(neuron, self.len_subsampling)
                    n = Neuron(input_format=input_format, input_file=m)
                    self.index = np.append(self.index, index)
                    self.database.append(n)
                    print index
                except:
                    print('ERROR IN:')
                    print index

        if(input_format == 'swc'):
            for neuron in input_file:
                n = Neuron(input_format=input_format, input_file=neuron)
                purne_n, dis = subsample.straight_subsample_with_fixed_number(n, self.n_subsampling)
                self.database.append(purne_n)