コード例 #1
0
    Xtest = np.array(Xtest)
    Ptest = np.array(Ptest)
    X = np.array(X)
    P = np.array(P)

    print str(Xtest.shape[0]) + " test sequences"
    print str(X.shape[0]) + " training sequences"

    if "1" in sys.argv[8]:
        L1 = True
    else:
        L1 = False

    if "y" in sys.argv[4]:
        model = MLFKTModel(X, P, intermediate_states, 0, L1)
    else:
        model = MLFKTModel(X, P, intermediate_states, 0.1, L1)

    mcmc = MCMCSampler(model, 0.15)

    burn = int(sys.argv[1])
    for c in range(20):
        mcmc.burnin(int(math.ceil((burn + 0.0) / 20)))
        print ("finished burn-in #: " + str((c + 1) * burn / 20))

    num_iterations = int(sys.argv[2])
    loop = 20
    per_loop = int(math.ceil((num_iterations + 0.0) / loop))
    for c in range(loop):
        a = time.time()
コード例 #2
0
newX = []
newP = []
for c in range(X.shape[0]):

    if X[c,-1] >= maxl-1:
        newX.append(X[c,:])
        newP.append(P[c,:])
X = np.array(newX)
P = np.array(newP)



start = time.time()

if 'y' in sys.argv[4]:
    model = MLFKTModel(X, P, intermediate_states, 0)
else:
    model = MLFKTModel(X, P, intermediate_states, 0.1)

mcmc = MCMCSampler(model, 0.15)

burn = int(sys.argv[1])
for c in range(20):
    mcmc.burnin(int(math.ceil((burn+0.0) / 20)))
    print("finished burn-in #: " + str((c+1)*burn/20))

num_iterations = int(sys.argv[2])
loop = 20
per_loop = int(math.ceil((num_iterations+0.0) / loop))
for c in range(loop):
    a = time.time()
コード例 #3
0
def run_learned_model(skill, diff_params = None):
    intermediate_states = 0
    fname = skill.replace(" ","_")
    fname = fname.replace("\"","")

    X = np.loadtxt(open("dump/observations_" + fname + ".csv", "rb"), delimiter=",")
    P = np.loadtxt(open("dump/problems_" + fname + ".csv","rb"),delimiter=",")

    k = 5
    #split 1/kth into test set
    N = X.shape[0]
    Xtest = []
    Xnew = []
    Ptest = []
    Pnew = []
    for c in range(N):
        if c % k == 0:#random.random() < 1 / (k+0.0):
            Xtest.append(X[c,:])
            Ptest.append(P[c,:])
        else:
            Xnew.append(X[c,:])
            Pnew.append(P[c,:])
    X = Xnew
    Xtest = np.array(Xtest)
    P = Pnew
    Ptest = np.array(Ptest)

    model = MLFKTModel(X, P, 0, 0.1)

    predl = []
    errl = []

    for c in range(3):
        param_dict = json.load(open("feb20_exps/PARAMS_"+skill+"_2states_500iter.json","r"))
        param_dict = param_dict[c]
        params = model.get_parameters()
        for k, v in param_dict.iteritems():
            #print k, v
            if k == "Pi":
                val = np.array(v)
                params["L"].set(val)
                params["L"].save()
            elif k == "Trans":
                val = np.array(v)
                params["T"].set(val)
                params["T"].save()
            elif k == "Emit":
                G = scipy.special.logit(v[0][1])
                S = scipy.special.logit(v[1][0])
                params["G_0"].set(G)
                params["S"].set(S)
                params["G_0"].save()
                params["S"].save()
            else:
                if diff_params is None:
                    params[k].set(v)
                    params[k].save()
                else:
                    params[k].set(diff_params[k])
                    params[k].save()

        params['Dsigma'].save()
        model.load_test_split(Xtest, Ptest)
        preds = model.get_predictions()
        err = preds - Xtest
        predl.append(preds)
        errl.append(err)



    return Xtest, Ptest, np.mean(predl,0), np.mean(errl,0)