コード例 #1
0
    def __getitem__(self, index):

        ImageName = self.img_files[index]

        I = cv2.imread(ImageName)
        I = cv2.resize(I, (640, 640), interpolation=cv2.INTER_AREA)
        #if(not np.shape(I2)):
        #    return
        #cv2.imshow("I", I)
        #cv2.waitKey()

        I, ImageSize = iu.CenterCropFactor(I, self.Factor)

        IS = iu.StandardizeInputs(np.float32(I))

        Image = np.transpose(IS, (2, 0, 1))

        MaskName = ImageName.replace("img", "mask")
        #Image = cv2.imread(ImageName)
        #RandImagePairName = self.img_files[index+1]
        #Image, ImageSize = iu.CenterCropFactor(Image, self.Factor)
        #Image = iu.StandardizeInputs(np.float32(Image))

        mask = cv2.imread(MaskName)
        if (not np.shape(mask)):
            mask = np.zeros(ImageSize, dtype=np.int)
            mask = cv2.resize(mask, (640, 640), interpolation=cv2.INTER_AREA)
        else:
            mask = cv2.resize(mask, (640, 640), interpolation=cv2.INTER_AREA)

        #cv2.imshow("mask", mask)
        #cv2.waitKey()

        mask, _ = iu.CenterCropFactor(mask, self.Factor)
        mask = np.float32(mask[:, :, 0]) / 255.0

        mask = np.expand_dims(mask, axis=2)
        mask = np.dstack((mask, 1.0 - mask))

        #transform = transforms.Compose([transforms.ToTensor(), \
        #                                transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
        return Image, mask
コード例 #2
0
    def __getitem__(self, index):

        ImageName = self.img_files[index]
        #ImagePairName = self.img_files[index+1]

        I = cv2.imread(ImageName)

        #I2 = cv2.imread(ImagePairName)
        #if(not np.shape(I2)):
        #    return

        I, ImageSize = iu.CenterCropFactor(I, self.Factor)
        #I2, _ = iu.CenterCropFactor(I2, self.Factor)

        #ICombined = np.dstack((I1, I2))  # 沿第3维组合

        IS = iu.StandardizeInputs(np.float32(I))

        Image = np.transpose(IS, (2, 0, 1))

        MaskName = ImageName.replace("img", "mask")
        #Image = cv2.imread(ImageName)
        #RandImagePairName = self.img_files[index+1]
        #Image, ImageSize = iu.CenterCropFactor(Image, self.Factor)
        #Image = iu.StandardizeInputs(np.float32(Image))

        mask = cv2.imread(MaskName)
        if (not np.shape(mask)):
            mask = np.zeros(ImageSize, dtype=np.int)

        #Mask2Name = ImagePairName.replace("img", "mask")
        #mask2 = cv2.imread(Mask2Name)
        #if (not np.shape(mask2)):
        #    mask2 = np.zeros(ImageSize, dtype=np.int)
        mask, _ = iu.CenterCropFactor(mask, self.Factor)
        mask = np.float32(mask[:, :, 0]) / 255.0
        mask = np.expand_dims(mask, axis=2)
        mask = np.dstack((mask, 1.0 - mask))

        #transform = transforms.Compose([transforms.ToTensor(), \
        #                                transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
        return Image, mask
コード例 #3
0
ファイル: TrainEVSegNet.py プロジェクト: zhjpqq/EVDodgeNet
def SetupAll(BasePath, LearningRate):
    """
    Inputs: 
    BasePath is the base path where Images are saved without "/" at the end
    Outputs:
    DirNames - Full path to all image files without extension
    Train/Val/Test - Idxs of all the images to be used for training/validation (held-out testing in this case)/testing
    Ratios - Ratios is a list of fraction of data used for [Train, Val, Test]
    CheckPointPath - Path to save checkpoints/model
    OptimizerParams - List of all OptimizerParams: depends on Optimizer
    SaveCheckPoint - Save checkpoint every SaveCheckPoint iteration in every epoch, checkpoint saved automatically after every epoch
    ImageSize - Size of the image
    NumTrain/Val/TestSamples - length(Train/Val/Test)
    NumTestRunsPerEpoch - Number of passes of Val data with MiniBatchSize 
    Train/Val/TestLabels - Labels corresponding to Train/Val/Test
    """
    # Setup DirNames
    DirNamesPath = BasePath + os.sep + 'DirNames.txt'
    LabelNamesPath = BasePath + os.sep + 'Labels.txt'
    TrainPath = BasePath + os.sep + 'Train.txt'
    DirNames, TrainNames, TrainLabels = ReadDirNames(DirNamesPath,
                                                     LabelNamesPath, TrainPath)

    # Setup Neural Net Params
    # List of all OptimizerParams: depends on Optimizer
    # For ADAM Optimizer: [LearningRate, Beta1, Beta2, Epsilion]
    UseDefaultFlag = 0  # Set to 0 to use your own params, do not change default parameters
    if UseDefaultFlag:
        # Default Parameters
        OptimizerParams = [1e-3, 0.9, 0.999, 1e-8]
    else:
        # Custom Parameters
        OptimizerParams = [LearningRate, 0.9, 0.999, 1e-8]

    # Save checkpoint every SaveCheckPoint iteration in every epoch, checkpoint saved automatically after every epoch
    SaveCheckPoint = 100

    # Image Input Shape
    Factor = 3
    I = cv2.imread(BasePath + os.sep + TrainNames[0])
    _, ImageSize = iu.CenterCropFactor(I, Factor)
    NumTrainSamples = len(TrainNames)

    return TrainNames, TrainLabels, OptimizerParams, SaveCheckPoint, Factor, ImageSize, NumTrainSamples
コード例 #4
0
ファイル: TrainEVSegNet.py プロジェクト: zhjpqq/EVDodgeNet
def GenerateBatch(TrainNames, TrainLabels, Factor, ImageSize, MiniBatchSize,
                  BasePath, MaxFrameDiff):
    """
    Inputs: 
    DirNames - Full path to all image files without extension
    NOTE that Train can be replaced by Val/Test for generating batch corresponding to validation (held-out testing in this case)/testing
    TrainLabels - Labels corresponding to Train
    NOTE that TrainLabels can be replaced by Val/TestLabels for generating batch corresponding to validation (held-out testing in this case)/testing
    ImageSize - Size of the Image
    MiniBatchSize is the size of the MiniBatch
    Outputs:
    I1Batch - Batch of I1 images after standardization and cropping/resizing to ImageSize
    HomeVecBatch - Batch of Homing Vector labels
    """
    IBatch = []
    I1Batch = []
    I2Batch = []
    LabelBatch = []

    ImageNum = 0
    while ImageNum < MiniBatchSize:
        # Generate random image
        RandIdx = random.randint(0, len(TrainNames) - MaxFrameDiff)
        RandFrameDiff = random.randint(1, MaxFrameDiff)

        RandImageName = TrainNames[RandIdx]
        # Create File Number in same folder with RandFrameDiff
        RandImagePairName = RandImageName.split(
            os.sep)[0] + os.sep + 'events' + os.sep + 'event_' + str(
                int(re.split('_|.png', RandImageName)[-2]) + RandFrameDiff)
        I2 = cv2.imread(BasePath + os.sep + RandImagePairName + '.png')
        if (not np.shape(I2)
            ):  # OpenCV returns empty matrix if no image is found!
            continue  # Retry if RandImagePair is not valid!

        I1 = cv2.imread(BasePath + os.sep + RandImageName)

        ImageNum += 1

        I1, _ = iu.CenterCropFactor(I1, Factor)
        I2, _ = iu.CenterCropFactor(I2, Factor)

        ICombined = np.dstack((I1, I2))

        # Standardize Inputs as given by Inception v3 paper
        # MAYBE: Find Mean of Dataset or use from ImageNet
        # MAYBE: Normalize Dataset
        # https://stackoverflow.com/questions/42275815/should-i-substract-imagenet-pretrained-inception-v3-model-mean-value-at-inceptio
        IS = iu.StandardizeInputs(np.float32(ICombined))
        Label1 = cv2.imread(BasePath + os.sep + TrainLabels[RandIdx])
        Label1Name = TrainLabels[RandIdx]
        Label2Name = Label1Name.split(
            os.sep)[0] + os.sep + 'masks' + os.sep + 'mask_' + '%08d.png' % (
                int(re.split('_|.png', RandImageName)[-2]) + RandFrameDiff
            )  # 08
        Label2 = cv2.imread(BasePath + os.sep + Label2Name)
        LabelCropped, _ = iu.CenterCropFactor(
            Label1 | Label2,
            Factor)  # Label Mask is the logical OR of both Masks
        LabelCropped = np.float32(LabelCropped[:, :, 0]) / 255.0
        LabelCropped = np.expand_dims(LabelCropped, axis=3)
        LabelCropped = np.dstack((LabelCropped, 1.0 - LabelCropped))

        # Append All Images and Mask
        IBatch.append(IS)
        I1Batch.append(I1)
        I2Batch.append(I2)
        LabelBatch.append(LabelCropped)

    return IBatch, I1Batch, I2Batch, LabelBatch