def generic_main(args): import sys from MixedPrecision.tools.utils import summary import MixedPrecision.tools.loaders as loaders sys.stderr = sys.stdout torch.set_num_threads(args.workers) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) utils.set_use_gpu(args.gpu, not args.no_bench_mode) utils.set_use_half(args.half) utils.setup(args) utils.show_args(args) model = models.__dict__[args.model]() summary(model, input_size=(3, 224, 224), batch_size=args.batch_size) data = loaders.load_dataset(args, train=True) if args.warmup: train(args, model, data, args.model, is_warmup=True) train(args, model, data, args.model, is_warmup=False) sys.exit(0)
def main(): import sys from MixedPrecision.pytorch.mnist_fully_connected import load_mnist from MixedPrecision.pytorch.mnist_fully_connected import train from MixedPrecision.pytorch.mnist_fully_connected import init_weights from MixedPrecision.tools.args import get_parser from MixedPrecision.tools.utils import summary import MixedPrecision.tools.utils as utils torch.manual_seed(0) torch.cuda.manual_seed_all(0) parser = get_parser() args = parser.parse_args() utils.set_use_gpu(args.gpu) utils.set_use_half(args.half) shape = (1, 28, 28) if args.fake: shape = args.shape for k, v in vars(args).items(): print('{:>30}: {}'.format(k, v)) try: current_device = torch.cuda.current_device() print('{:>30}: {}'.format('GPU Count', torch.cuda.device_count())) print('{:>30}: {}'.format('GPU Name', torch.cuda.get_device_name(current_device))) except: pass model = MnistConvolution(input_shape=shape, conv_num=args.conv_num, kernel_size=args.kernel_size, explicit_permute=args.permute) model.float() model.apply(init_weights) model = utils.enable_cuda(model) summary(model, input_size=(shape[0], shape[1], shape[2])) model = utils.enable_half(model) train( args, model, load_mnist(args, hwc_permute=args.permute, fake_data=args.fake, shape=shape)) sys.exit(0)
from MixedPrecision.tools.optimizer import OptimizerAdapter import MixedPrecision.tools.utils as utils from apex.fp16_utils import network_to_half sys.stderr = sys.stdout parser = get_parser() args = parser.parse_args() torch.set_num_threads(args.workers) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) utils.set_use_gpu(args.gpu, not args.no_bench_mode) utils.set_use_half(args.half) utils.show_args(args) data_loader = load_dataset(args, train=True) model = utils.enable_cuda(HybridClassifier()) if args.half: model = network_to_half(model) criterion = utils.enable_cuda(HybridLoss()) optimizer = torch.optim.SGD( model.parameters(), args.lr,
def main(): # This does not work but this is what the documentation says to do... #try: # import torch.multiprocessing as multiprocessing # multiprocessing.set_start_method('spawn') #except Exception as e: # print(e) import MixedPrecision.tools.utils as utils import argparse parser = argparse.ArgumentParser(description='Data loader Benchmark') parser.add_argument('--data', type=str, metavar='DIR', help='path to the dataset location') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=10, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--prof', dest='prof', type=int, default=10, help='Only run N iterations for profiling.') parser.add_argument( '--loader', type=str, default='pytorch', help='The kind of loader to use (torch, prefetch, benzina, dali, zip)') parser.add_argument('--async', action='store_true', default=False, help='Use AsyncPrefetcher') args = parser.parse_args() utils.set_use_gpu(True, True) utils.set_use_half(True) utils.show_args(args) benchmark_loader(args)