コード例 #1
0
    def init_testloader(self, **kwargs):
        super(SarRecognitionTemplate, self).init_testloader(**kwargs)
        test_transforms = get('test_transforms', kwargs, None)
        if test_transforms is None:
            test_transforms = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])
        kwargs['transforms'] = test_transforms
        test_index = get_valid('test_index', kwargs)
        test_folder = get_valid('test_folder', kwargs)
        test_dataset = SarDataset(index_path=test_index,
                                  folder=test_folder,
                                  **kwargs)

        test_batch = get('test_batch', kwargs, 64)
        test_worker = get('test_worker', kwargs, 8)
        test_loader = torch.utils.data.DataLoader(
            test_dataset,
            batch_size=self.get_batch_size(test_batch),
            num_workers=test_worker)
        test_data_num = len(test_dataset)
        print('Analyse test index: {}, test data num: {}!'.format(
            test_index, test_data_num))
        return test_loader
コード例 #2
0
    def retrieval(self, **kwargs):
        target_folder = get_valid('target_folder', kwargs)
        lsh = get_valid('lsh', kwargs)
        query_num = get('query_num', kwargs, 1)
        query_num = int(query_num)

        images = ImageProcess(target_folder).process()
        print('extract target feature')
        vecs, img_paths = extract_vectors(self.model,
                                          images,
                                          1024,
                                          self.transform,
                                          ms=self.ms)
        target_feature = dict(
            zip(img_paths, list(vecs.detach().cpu().numpy().T)))

        for q_path, q_vec in target_feature.items():
            try:
                response = lsh.query(q_vec.flatten(),
                                     num_results=query_num,
                                     distance_func="cosine")
                print('target img: {}'.format(q_path))
                for idx in range(query_num):
                    query_img_path = response[idx][0][1]
                    print('{}th query img: {}'.format(idx, query_img_path))
                print('*' * 20)
            except:
                print('error occur on: {}'.format(q_path))
                continue
コード例 #3
0
 def init_trainloader(self, **kwargs):
     super(SarRecognitionTemplate, self).init_trainloader(**kwargs)
     train_transforms = get('train_transforms', kwargs, None)
     if train_transforms is None:
         distort_num = get('distort_num', kwargs, 10)
         distort_ratio = get('distort_ratio', kwargs, 0.1)
         train_transforms = transforms.Compose([
             RandomDistort(distort_num, distort_ratio),
             transforms.ToTensor(),
             transforms.Normalize([0.485, 0.456, 0.406],
                                  [0.229, 0.224, 0.225])
         ])
     kwargs['transforms'] = train_transforms
     train_index = get_valid('train_index', kwargs)
     train_folder = get_valid('train_folder', kwargs)
     train_dataset = SarDataset(index_path=train_index,
                                folder=train_folder,
                                **kwargs)
     train_batch = get('train_batch', kwargs, 64)
     train_worker = get('train_worker', kwargs, 8)
     drop_last = get('drop_last', kwargs, True)
     shuffle = get('shuffle', kwargs, True)
     train_loader = torch.utils.data.DataLoader(
         train_dataset,
         batch_size=self.get_batch_size(train_batch),
         num_workers=train_worker,
         drop_last=drop_last,
         shuffle=shuffle)
     train_data_num = len(train_dataset)
     print('Analyse train index: {}, train data num: {}!'.format(
         train_index, train_data_num))
     return train_loader
コード例 #4
0
    def init_testloader(self, **kwargs):
        test_transforms = get('test_transforms', kwargs, None)
        if test_transforms is None:
            test_transforms = transforms.Compose([
                # Denoise(),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])
        kwargs['transforms'] = test_transforms
        test_folder = get_valid('test_folder', kwargs)
        test_batch = get('test_batch', kwargs, 64)
        test_worker = get('test_worker', kwargs, 8)

        class_dict = get_valid('class_dict', kwargs)
        test_loader_dict = dict()

        for cls in class_dict:
            cls_folder = os.path.join(test_folder, cls)
            cls_index_path = os.path.join(cls_folder, 'label.txt')

            test_dataset = SarDataset(index_path=cls_index_path,
                                      folder=cls_folder,
                                      **kwargs)

            test_loader = torch.utils.data.DataLoader(
                test_dataset,
                batch_size=self.get_batch_size(test_batch),
                num_workers=test_worker)
            cls_int = class_dict[cls]
            test_loader_dict[cls_int] = test_loader

            print('test {} data num: {}!'.format(cls, len(test_dataset)))
        return test_loader_dict
コード例 #5
0
    def save_model(self, **kwargs):
        model = get_valid('model', kwargs)
        ckpt_folder = get_valid('ckpt_folder', kwargs)
        epoch = get_valid('epoch', kwargs)
        loss = get_valid('loss', kwargs)
        eval_type = get('eval_type', kwargs, 'acc')
        acc = get('acc', kwargs)
        acc = round(acc, 4)
        model_name = get('model_name', kwargs, '')

        state = {
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'eval_type': eval_type,
            'acc': acc,
            'loss': loss
        }

        loss = round(loss, 4)

        ckpt_name = '{}epoch{}_{}{}_loss{}.pth'.format(model_name, epoch,
                                                       eval_type, acc, loss)
        ckpt_path = os.path.join(ckpt_folder, ckpt_name)
        torch.save(state, ckpt_path)
        print('Save checkpoint: {}'.format(ckpt_path))
        return ckpt_path
コード例 #6
0
    def save_model(self, **kwargs):
        model = get_valid('model', kwargs)
        ckpt_folder = get_valid('ckpt_folder', kwargs)
        epoch = get_valid('epoch', kwargs)
        loss = get_valid('loss', kwargs)
        eval_type = get('eval_type', kwargs, 'score')
        eval_score = get('eval_score', kwargs, 0)
        model_name = get('model_name', kwargs, '')

        state = {
            'epoch': epoch,
            'state_dict': model.state_dict(),
            'eval_type': eval_type,
            'eval_score': eval_score,
            'loss': loss
        }

        if eval_type is None:
            eval_type = ''
        if eval_score is None:
            eval_score = ''
        else:
            eval_score = round(eval_score, 4)
            eval_score = str(eval_score)
        loss = round(loss, 4)
        loss = str(loss)

        ckpt_name = '{}epoch{}{}{}loss{}.pth'.format(model_name, epoch,
                                                     eval_type, eval_score,
                                                     loss)
        ckpt_path = os.path.join(ckpt_folder, ckpt_name)
        torch.save(state, ckpt_path)
        print('Save checkpoint: {}'.format(ckpt_path))
        return ckpt_path
コード例 #7
0
    def forward(self, **kwargs):
        input = get_valid('input', kwargs)
        hidden = get_valid('hidden', kwargs)
        feature = get_valid('feature', kwargs)
        mask = get_valid('mask', kwargs)

        input = input.long()
        input = self.embedding(input)
        input = self.dropout(input)
        input = input.unsqueeze(0)

        _, hidden = self.rnn(input, hidden)
        hidden_tmp = hidden[1:].permute(1, 2, 0).unsqueeze(3)
        hidden_tmp = self.conv1(hidden_tmp)
        hidden_tmp = hidden_tmp.expand_as(feature)

        encode_conv = self.conv2(feature)
        encode_conv = self.conv3(torch.tanh(encode_conv + hidden_tmp)).view(
            encode_conv.shape[0], 1, -1)
        mask = mask.view(mask.shape[0], mask.shape[1], -1)

        w = self.mask_softmax(encode_conv, dim=2, mask=mask)
        # feature = self.feature_conv(feature)
        # feature = self.bn(feature)
        # feature = self.relu(feature)
        feature = feature.view(feature.shape[0], feature.shape[1], -1)
        c = torch.sum(feature * w, 2)
        ouput = torch.cat([hidden[1], c], 1)
        ouput = self.out(ouput)
        return ouput, hidden
コード例 #8
0
    def train_model(self, **kwargs):
        model = get_valid('model', kwargs)
        model.train()
        optimizer = get_valid('optimizer', kwargs)
        epoch = get_valid('epoch', kwargs)
        criterion = get_valid('criterion', kwargs)
        train_loader = get_valid('train_loader', kwargs)
        total_loss = 0

        iter_num = len(train_loader)
        log_step = iter_num // 100
        log_step = max(1, log_step)

        for idx, data in enumerate(train_loader):
            img, label = data[0], data[1]
            if self.gpu is not None:
                img = img.cuda()
                label = label.cuda()
                model = model.cuda()

            optimizer.zero_grad()
            pred = model(image=img, type='classify')
            loss = criterion['cls'](pred, label)
            loss.backward()
            optimizer.step()

            if idx % log_step == 0 and idx != 0:
                finish_percent = int(idx / iter_num * 100)
                print('Train: finish {}%, loss: {}'.format(
                    finish_percent, loss.data.item()))
            total_loss += loss.data.item()

        avg_loss = total_loss / iter_num
        log = generate_log(epoch=epoch, name='Train', avg_loss=avg_loss)
        return log, avg_loss
コード例 #9
0
    def forward(self, **kwargs):
        super(SarRecognitionModel, self).forward(**kwargs)
        image = get_valid('image', kwargs)
        target_variable = get_valid('target', kwargs)
        mask = get_valid('mask', kwargs)
        teacher_forcing_ratio = get('teacher_forcing_ratio', kwargs, 1)

        hidden, feature = self.encoder(image=image)
        hidden = hidden.permute(2, 0, 1)

        decoder_input = target_variable[:, 0]
        output_list = list()

        for di in range(1, target_variable.shape[1]):
            output, hidden = self.decoder(input=decoder_input,
                                          hidden=hidden,
                                          feature=feature,
                                          mask=mask)
            output_list.append(output.unsqueeze(1))

            teacher_forcing = random.random() < teacher_forcing_ratio
            if teacher_forcing:
                decoder_input = target_variable[:, di]

            else:
                _, topi = output.data.topk(1)
                decoder_input = topi.squeeze(1)

        output_list = torch.cat(output_list, 1)
        return output_list
コード例 #10
0
 def __init__(self, **kwargs):
     self.folder = get_valid('folder', kwargs)
     self.is_training = get_valid('is_training', kwargs)
     self.class_dict = get_valid('class_dict', kwargs)
     self.transforms = get_valid('transforms', kwargs)
     self.split = get('split', kwargs, ',')
     self.index_list = self.__generate_index()
コード例 #11
0
 def __init__(self, **kwargs):
     self.index_path = get_valid('index_path', kwargs)
     self.folder = get_valid('folder', kwargs)
     self.transforms = get('transforms', kwargs, None)
     self.encoding = get('encoding', kwargs, 'UTF-8-sig')
     self.size = get('size', kwargs, (32, 256, 3))
     self.label_split = get('label_split', kwargs, ',')
     self.data_list = self.get_data_list()
     self.max_len = get('max_len', kwargs, 64)
     self.mask_ratio = get('mask_ratio', kwargs, (8, 4))
コード例 #12
0
    def test_model(self, **kwargs):
        model = get_valid('model', kwargs)
        model.eval()
        epoch = get_valid('epoch', kwargs)
        criterion = get_valid('criterion', kwargs)
        test_loader = get_valid('test_loader', kwargs)
        total_loss = 0

        iter_num = len(test_loader)
        log_step = iter_num // 100
        log_step = max(1, log_step)

        total_correct = 0
        total_pred = 0

        with torch.no_grad():
            for idx, (image, label, mask) in enumerate(test_loader):
                target = self.encode(label, False)
                target = torch.from_numpy(target)
                target = target.long()

                target_cp = self.encode(label, True)
                target_cp = torch.from_numpy(target_cp)
                target_cp = target_cp.long()

                if self.use_gpu:
                    image = image.cuda()
                    target = target.cuda()
                    mask = mask.cuda()
                    target_cp = target_cp.cuda()

                output = model(image=image, target=target, mask=mask)

                pred_label = self.decode(output)
                acc, correct, pred_num = self.compute_acc(pred_label, label)

                total_correct += correct
                total_pred += pred_num

                output = output.contiguous().view(-1, self.class_num)
                target_cp = target_cp[:, 1:].contiguous().view(-1)

                loss = criterion(output, target_cp, ignore_index=-1)
                total_loss += loss.data.item()

                if idx % log_step == 0 and idx != 0:
                    finish_percent = int(idx / iter_num * 100)
                    print('Test: finish {}%, loss: {}'.format(
                        finish_percent, loss.data.item()))

        acc = total_correct / total_pred
        avg_loss = total_loss / iter_num
        log = generate_log(epoch=epoch, name='Test', avg_loss=avg_loss)
        return log, avg_loss, acc
コード例 #13
0
    def init_trainloader(self, **kwargs):
        train_transforms = get('train_transforms', kwargs, None)
        if train_transforms is None:
            distort_num = get('distort_num', kwargs, 10)
            distort_ratio = get('distort_ratio', kwargs, 0.1)
            train_transforms = transforms.Compose([
                RandomDistort(distort_num, distort_ratio),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])
        kwargs['transforms'] = train_transforms
        train_folder = get_valid('train_folder', kwargs)
        class_dict = get_valid('class_dict', kwargs)
        train_batch = get('train_batch', kwargs, 64)
        train_worker = get('train_worker', kwargs, 8)
        drop_last = get('drop_last', kwargs, True)
        shuffle = get('shuffle', kwargs, True)

        train_loader_dict = dict()
        max_data_num = 0

        for cls in class_dict:
            cls_folder = os.path.join(train_folder, cls)
            cls_index_path = os.path.join(cls_folder, 'label.txt')

            train_dataset = SarDataset(index_path=cls_index_path,
                                       folder=cls_folder,
                                       **kwargs)

            train_loader = torch.utils.data.DataLoader(
                train_dataset,
                batch_size=self.get_batch_size(train_batch),
                num_workers=train_worker,
                drop_last=drop_last,
                shuffle=shuffle)
            cls_int = class_dict[cls]
            train_loader_dict[cls_int] = dict()
            train_loader_dict[cls_int]['data_loader'] = train_loader
            data_num = len(train_dataset)
            train_loader_dict[cls_int]['data_num'] = data_num
            if data_num > max_data_num:
                max_data_num = data_num

            print('train {} data num: {}!'.format(cls, data_num))
        for cls in class_dict:
            cls_int = class_dict[cls]
            data_num = train_loader_dict[cls_int]['data_num']
            train_loader_dict[cls_int]['repeat_num'] = int(max_data_num /
                                                           data_num)
        return train_loader_dict
コード例 #14
0
    def eval_model(self, **kwargs):
        model = get_valid('model', kwargs)
        model.eval()

        eval_transforms = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
        test_folder = get_valid('test_folder', kwargs)
        pred_folder = get_valid('pred_folder', kwargs)
        scale = get('scale', kwargs, 4)
        img_list = get_img_list(test_folder)
        for img in img_list:
            img_path = os.path.join(test_folder, img)
            image = cv2.imread(img_path)
            image = image.astype(np.float32)
            image = eval_transforms(image)
            image = image.unsqueeze(0)
            if self.gpu is not None:
                image = image.cuda()

            with torch.no_grad():
                output = model(image=image)
            preds, boxes_list = pse_decode(output[0], scale)

            pred_list = list()
            if len(boxes_list)>0:
                for box in boxes_list:
                    box = sort_poly(box.astype(np.int32))
                    pred = '{},{},{},{},{},{},{},{}'.format(box[0, 0], box[0, 1], box[1, 0], box[1, 1],
                                                            box[2, 0], box[2, 1], box[3, 0], box[3, 1])
                    pred_list.append(pred)
            txt_name = img.split('.')[0] + '.txt'
            txt_path = os.path.join(pred_folder, txt_name)
            list2txt(boxes_list, txt_path)


        iou_threshold = get('iou_threshold', kwargs, 0.5)
        score, total_label_num, total_pred_num, total_correct_num = f1score(test_folder, pred_folder, iou_threshold)
        if total_label_num == 0 or total_correct_num == 0 or total_pred_num == 0:
            precision = 0
            recall = 0
        else:
            precision = total_correct_num / total_label_num
            recall = total_correct_num / total_pred_num
        print('f1score: {}, precision={}/{}={}, recall={}/{}={}, iou threshold: {};'.format(score, total_correct_num,
                                                                                            total_label_num, precision,
                                                                                            total_correct_num,
                                                                                            total_pred_num, recall,
                                                                                            iou_threshold))
        return score
コード例 #15
0
    def train_model(self, **kwargs):
        super(EastDetectionTemplate, self).train_model(**kwargs)
        model = get_valid('model', kwargs)
        model = model.train()
        optimizer = get_valid('optimizer', kwargs)
        epoch = get_valid('epoch', kwargs)
        criterion = get_valid('criterion', kwargs)
        train_loader = get_valid('train_loader', kwargs)

        total_loss = 0
        aabb_loss = 0
        theta_loss = 0
        cls_loss = 0
        iter_num = len(train_loader)
        if iter_num == 0:
            raise RuntimeError('training data num < batch num!')
        for data in train_loader:
            img = data['img']
            score_map = data['score_map']
            geo_map = data['geo_map']
            training_mask = data['training_mask']
            if self.gpu is not None:
                img = img.cuda()
                score_map = score_map.cuda()
                geo_map = geo_map.cuda()
                training_mask = training_mask.cuda()

            f_score, f_geometry = model(image=img)
            geo_map = geo_map.permute(0, 3, 1, 2).contiguous()
            loss, l_aabb, l_theta, l_cls = criterion(score_map, f_score, geo_map, f_geometry, training_mask)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.data.item()
            aabb_loss += l_aabb.data.item()
            theta_loss += l_theta.data.item()
            cls_loss += l_cls.data.item()

        avg_loss = total_loss / iter_num
        avg_aabb_loss = aabb_loss / iter_num
        avg_theta_loss = theta_loss / iter_num
        avg_cls_loss = cls_loss / iter_num

        log = generate_log(epoch=epoch,
                           name='Train',
                           avg_loss=avg_loss,
                           avg_aabb_loss=avg_aabb_loss,
                           avg_theta_loss=avg_theta_loss,
                           avg_cls_loss=avg_cls_loss)
        return log, avg_loss
コード例 #16
0
    def __init__(self, **kwargs):
        super(AbstractEncoderDecoderModel, self).__init__()
        encoder = get_valid('encoder', kwargs)
        decoder = get_valid('decoder', kwargs)
        model_name = get_valid('model_name', kwargs)

        encoder_factory = EncoderModelFactory()
        kwargs['model_name'] = encoder
        self.encoder = encoder_factory.get_model(**kwargs)

        decoder_factory = DecoderModelFactory()
        kwargs['model_name'] = decoder
        self.decoder = decoder_factory.get_model(**kwargs)

        kwargs['model_name'] = model_name
コード例 #17
0
    def load_model(self, **kwargs):
        model = get_valid('model', kwargs)
        checkpoint = get_valid('checkpoint', kwargs)
        assert os.path.exists(checkpoint)

        if self.use_gpu is False:
            ckpt = torch.load(checkpoint, map_location='cpu')
        else:
            ckpt = torch.load(checkpoint)
        new_state_dict = OrderedDict()
        for k, v in ckpt['state_dict'].items():
            name = k[7:]
            new_state_dict[name] = v
        model.load_state_dict(new_state_dict)
        return model
コード例 #18
0
    def test_model(self, **kwargs):
        super(EastDetectionTemplate, self).test_model(**kwargs)
        model = get_valid('model', kwargs)
        model = model.eval()
        epoch = get_valid('epoch', kwargs)
        criterion = get_valid('criterion', kwargs)
        test_loader = get_valid('test_loader', kwargs)

        total_loss = 0
        aabb_loss = 0
        theta_loss = 0
        cls_loss = 0
        iter_num = len(test_loader)
        with torch.no_grad():
            for data in test_loader:
                img = data['img']
                score_map = data['score_map']
                geo_map = data['geo_map']
                training_mask = data['training_mask']
                # img_path = data['img_path']
                if self.gpu is not None:
                    img = img.cuda()
                    score_map = score_map.cuda()
                    geo_map = geo_map.cuda()
                    training_mask = training_mask.cuda()

                f_score, f_geometry = model(image=img)
                geo_map = geo_map.permute(0, 3, 1, 2).contiguous()
                loss, l_aabb, l_theta, l_cls = criterion(score_map, f_score, geo_map, f_geometry, training_mask)

                total_loss += loss.data.item()
                aabb_loss += l_aabb.data.item()
                theta_loss += l_theta.data.item()
                cls_loss += l_cls.data.item()

        avg_loss = total_loss / iter_num
        avg_aabb_loss = aabb_loss / iter_num
        avg_theta_loss = theta_loss / iter_num
        avg_cls_loss = cls_loss / iter_num

        log = generate_log(epoch=epoch,
                           name='Test',
                           avg_loss=avg_loss,
                           avg_aabb_loss=avg_aabb_loss,
                           avg_theta_loss=avg_theta_loss,
                           avg_cls_loss=avg_cls_loss)

        return log, avg_loss
コード例 #19
0
    def train_model(self, **kwargs):
        model = get_valid('model', kwargs)
        model.train()
        optimizer = get_valid('optimizer', kwargs)
        epoch = get_valid('epoch', kwargs)
        criterion = get_valid('criterion', kwargs)
        train_loader = get_valid('train_loader', kwargs)
        total_loss = 0

        iter_num = len(train_loader)
        log_step = iter_num // 100
        log_step = max(1, log_step)

        if iter_num == 0:
            raise RuntimeError('training data num < batch num!')
        for idx, (image, label, mask) in enumerate(train_loader):
            target = self.encode(label, False)
            target = torch.from_numpy(target)
            target = target.long()

            target_cp = self.encode(label, True)
            target_cp = torch.from_numpy(target_cp)
            target_cp = target_cp.long()

            if self.use_gpu:
                image = image.cuda()
                mask = mask.cuda()
                target = target.cuda()
                target_cp = target_cp.cuda()

            output = model(image=image, target=target, mask=mask)
            output = output.contiguous().view(-1, self.class_num)
            target_cp = target_cp[:, 1:].contiguous().view(-1)

            loss = criterion(output, target_cp, ignore_index=-1)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            total_loss += loss.data.item()

            if idx % log_step == 0 and idx != 0:
                finish_percent = int(idx / iter_num * 100)
                print('Train: finish {}%, loss: {}'.format(
                    finish_percent, loss.data.item()))

        avg_loss = total_loss / iter_num
        log = generate_log(epoch=epoch, name='Train', avg_loss=avg_loss)
        return log, avg_loss
コード例 #20
0
    def __init__(self, **kwargs):
        super(PseDetectionModel, self).__init__(**kwargs)
        n = get('n', kwargs, 6)
        scale = get('scale', kwargs, 1)
        channels = get_valid('channels', kwargs)
        self.scale = scale
        conv_out = 256

        # Top layer
        self.toplayer = nn.Conv2d(channels[0], conv_out, kernel_size=1, stride=1, padding=0)  # Reduce channels
        # Lateral layers
        self.latlayer1 = nn.Conv2d(channels[1], conv_out, kernel_size=1, stride=1, padding=0)
        self.latlayer2 = nn.Conv2d(channels[2], conv_out, kernel_size=1, stride=1, padding=0)
        self.latlayer3 = nn.Conv2d(channels[3], conv_out, kernel_size=1, stride=1, padding=0)

        # Smooth layers
        self.smooth1 = nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1)
        self.smooth2 = nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1)
        self.smooth3 = nn.Conv2d(conv_out, conv_out, kernel_size=3, stride=1, padding=1)

        self.conv = nn.Sequential(
            nn.Conv2d(conv_out * 4, conv_out, kernel_size=3, padding=1, stride=1),
            nn.BatchNorm2d(conv_out),
            nn.ReLU(inplace=True)
        )
        self.out_conv = nn.Conv2d(conv_out, n, kernel_size=1, stride=1)
コード例 #21
0
 def init_testloader(self, **kwargs):
     super(EastDetectionTemplate, self).init_testloader(**kwargs)
     test_transforms = get('test_transforms', kwargs, None)
     if test_transforms is None:
         test_transforms = transforms.Compose([
             transforms.ToTensor(),
             transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
         ])
     kwargs['transforms'] = test_transforms
     test_folder = get_valid('test_folder', kwargs)
     assert os.path.exists(test_folder)
     test_dataset = EastDataset(folder=test_folder,
                                **kwargs)
     test_data_num = len(test_dataset)
     test_batch = get('test_batch', kwargs, 4)
     test_worker = get('test_worker', kwargs, 8)
     if self.gpu is None:
         batch_size = test_batch
     else:
         batch_size = test_batch * len(self.gpu)
     test_loader = torch.utils.data.DataLoader(test_dataset,
                                               batch_size=batch_size,
                                               num_workers=test_worker)
     print('Generate test data loader, test data folder: {}, train data num: {}'.format(test_folder,
                                                                                        test_data_num))
     return test_loader
コード例 #22
0
    def init_testloader(self, **kwargs):
        test_transforms = get('test_transforms', kwargs, None)
        if test_transforms is None:
            test_transforms = transforms.Compose([
                Denoise(),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])
        test_folder = get_valid('test_folder', kwargs)

        test_dataset = MultiDecoderClassifyDataset(folder=test_folder,
                                                   is_training=False,
                                                   transforms=test_transforms,
                                                   **kwargs)

        test_batch = get('test_batch', kwargs, 16)
        test_worker = get('test_worker', kwargs, 8)

        test_loader = torch.utils.data.DataLoader(test_dataset,
                                                  batch_size=test_batch,
                                                  num_workers=test_worker)
        test_data_num = len(test_dataset)
        self.test_data_num = test_data_num
        print(
            'generate test data loader, test data folder: {}, test data num:{}'
            .format(test_folder, test_data_num))
        return test_loader
コード例 #23
0
    def init_trainloader(self, **kwargs):
        train_transforms = get('train_transforms', kwargs, None)
        if train_transforms is None:
            distort_num = get('distort_num', kwargs, 10)
            distort_ratio = get('distort_ratio', kwargs, 0.1)
            train_transforms = transforms.Compose([
                RandomDistort(distort_num, distort_ratio),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406],
                                     [0.229, 0.224, 0.225])
            ])

        train_folder = get_valid('train_folder', kwargs)
        train_dataset = MultiDecoderClassifyDataset(
            folder=train_folder,
            is_training=True,
            transforms=train_transforms,
            **kwargs)
        train_batch = get('train_batch', kwargs, 16)
        train_worker = get('train_worker', kwargs, 8)
        drop_last = get('drop_last', kwargs, True)
        shuffle = get('shuffle', kwargs, True)
        train_loader = torch.utils.data.DataLoader(train_dataset,
                                                   batch_size=train_batch,
                                                   num_workers=train_worker,
                                                   drop_last=drop_last,
                                                   shuffle=shuffle)
        train_data_num = len(train_dataset)
        self.train_data_num = train_data_num
        print(
            'Generate train data loader, train data folder: {}, train data num: {}'
            .format(train_folder, train_data_num))
        return train_loader
コード例 #24
0
 def __init__(self, **kwargs):
     super(SarRecognitionTemplate, self).__init__(**kwargs)
     word_index_path = get_valid('word_index_path', kwargs)
     self.word2num, self.num2word = self.generate_dict(word_index_path)
     assert len(self.word2num) == len(self.num2word)
     self.class_num = len(self.word2num)
     self.max_len = get('max_len', kwargs, 64)
コード例 #25
0
    def forward(self, **kwargs):
        super(NTSClassifyModel, self).forward(**kwargs)
        image = get_valid('image', kwargs)

        feature_list = self.backbone(image)
        resnet_out = feature_list[2]
        rpn_feature = feature_list[0]
        feature = feature_list[1]

        x_pad = F.pad(
            image,
            (self.pad_side, self.pad_side, self.pad_side, self.pad_side),
            mode='constant',
            value=0)
        batch = image.size(0)
        # we will reshape rpn to shape: batch * nb_anchor
        rpn_score = self.proposal_net(rpn_feature.detach())
        all_cdds = [
            np.concatenate((x.reshape(-1, 1), self.edge_anchors.copy(),
                            np.arange(0, len(x)).reshape(-1, 1)),
                           axis=1) for x in rpn_score.data.cpu().numpy()
        ]
        top_n_cdds = [
            self.hard_nms(x, topn=self.top_n, iou_thresh=0.25)
            for x in all_cdds
        ]
        top_n_cdds = np.array(top_n_cdds)
        top_n_index = top_n_cdds[:, :, -1].astype(np.int)
        if self.use_gpu:
            top_n_index = torch.from_numpy(top_n_index).cuda()
        else:
            top_n_index = torch.from_numpy(top_n_index)
        top_n_prob = torch.gather(rpn_score, dim=1, index=top_n_index.long())
        if self.use_gpu:
            part_imgs = torch.zeros([batch, self.top_n, 3, 224, 224]).cuda()
        else:
            part_imgs = torch.zeros([batch, self.top_n, 3, 224, 224])
        for i in range(batch):
            for j in range(self.top_n):
                [y0, x0, y1, x1] = top_n_cdds[i][j, 1:5].astype(np.int)
                part_imgs[i:i + 1, j] = F.interpolate(x_pad[i:i + 1, :, y0:y1,
                                                            x0:x1],
                                                      size=(224, 224),
                                                      mode='bilinear',
                                                      align_corners=True)
        part_imgs = part_imgs.view(batch * self.top_n, 3, 224, 224)
        feature_list2 = self.backbone(part_imgs.detach())
        part_features = feature_list2[1]
        part_feature = part_features.view(batch, self.top_n, -1)
        part_feature = part_feature[:, :self.cat_num, ...].contiguous()
        part_feature = part_feature.view(batch, -1)
        concat_out = torch.cat([part_feature, feature], dim=1)
        concat_logits = self.concat_net(concat_out)
        raw_logits = resnet_out
        part_logits = self.partcls_net(part_features).view(
            batch, self.top_n, -1)
        return [
            raw_logits, concat_logits, part_logits, top_n_index, top_n_prob
        ]
コード例 #26
0
 def __init__(self, **kwargs):
     self.folder = get_valid('folder', kwargs)
     self.transforms = get('transforms', kwargs, None)
     self.input_size = get('input_size', kwargs, (768, 768))
     self.detection_transforms = get('detection_transforms', kwargs, None)
     self.data_list = self.__get_data_list()
     self.n = get('n', kwargs, 6)
     self.m = get('m', kwargs, 0.5)
コード例 #27
0
 def __init__(self, **kwargs):
     super(PredictClassification, self).__init__(**kwargs)
     self.class_map = get_valid('class_map', kwargs)
     model = self.init_model(**kwargs)
     model = self.load_model(model=model, **kwargs)
     if self.use_gpu:
         model = model.cuda()
     model = DataParallel(model)
     self.model = model.eval()
コード例 #28
0
 def __init__(self, **kwargs):
     super(ProposalNet, self).__init__()
     self.nts_fc_ratio = get_valid("nts_fc_ratio", kwargs)
     self.down1 = nn.Conv2d(512 * self.nts_fc_ratio, 128, 3, 1, 1)
     self.down2 = nn.Conv2d(128, 128, 3, 2, 1)
     self.down3 = nn.Conv2d(128, 128, 3, 2, 1)
     self.ReLU = nn.ReLU()
     self.tidy1 = nn.Conv2d(128, 6, 1, 1, 0)
     self.tidy2 = nn.Conv2d(128, 6, 1, 1, 0)
     self.tidy3 = nn.Conv2d(128, 9, 1, 1, 0)
コード例 #29
0
    def train_model(self, **kwargs):
        super(PseDetectionTemplate, self).train_model(**kwargs)
        model = get_valid('model', kwargs)
        model.train()
        optimizer = get_valid('optimizer', kwargs)
        epoch = get_valid('epoch', kwargs)
        criterion = get_valid('criterion', kwargs)
        train_loader = get_valid('train_loader', kwargs)

        total_loss = 0
        total_text_loss = 0
        total_kernels_loss = 0
        iter_num = len(train_loader)
        if iter_num == 0:
            raise RuntimeError('training data num < batch num!')
        for data in train_loader:
            img = data['img']
            score_maps = data['score_maps']
            training_mask = data['training_mask']
            if self.gpu is not None:
                img = img.cuda()
                score_maps = score_maps.cuda()
                training_mask = training_mask.cuda()

            output = model(image=img)
            loss_text, loss_kernels, loss = criterion(output, score_maps, training_mask)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            total_loss += loss.data.item()
            total_text_loss += loss_text.data.item()
            total_kernels_loss += loss_kernels.data.item()

        avg_loss = total_loss / iter_num
        avg_text_loss = total_text_loss / iter_num
        avg_kernels_loss = total_kernels_loss / iter_num

        log = generate_log(epoch=epoch,
                           name='Train',
                           avg_loss=avg_loss,
                           avg_text_loss=avg_text_loss,
                           avg_kernels_loss=avg_kernels_loss)
        return log, avg_loss
コード例 #30
0
 def init_optimizer(self, **kwargs):
     super(ClassifyTemplate, self).init_optimizer(**kwargs)
     model = get_valid('model', kwargs)
     lr = get('lr', kwargs, 0.001)
     weight_decay = get('weight_decay', kwargs, 1e-4)
     raw_optimizer = torch.optim.SGD(model.parameters(),
                                     lr=lr,
                                     momentum=0.9,
                                     weight_decay=weight_decay)
     return raw_optimizer