コード例 #1
0
# Setup data model and network covariates
data_model = NonstationaryLogistic()
covariates = []
for name in theta_true:
    covariates.append(name)

    data_model.beta[name] = theta_true[name]

    def f_x(i_1, i_2):
        return np.random.normal(0, 1.0)

    net.new_edge_covariate(name).from_binary_function_ind(f_x)

# Instantiate network according to data model
data_model.match_kappa(net, ('row_sum', target_degree))
net.generate(data_model)
net.show_heatmap(order_by_row='alpha_out')
net.show_heatmap(order_by_col='alpha_in')

# Display network
plt.figure(figsize=(17, 4.25))
plt.subplot(141)
plt.title('Network')
graph = nx.DiGraph()
A = net.as_dense()
for i in range(N):
    graph.add_node(i)
for i in range(N):
    for j in range(N):
        if A[i, j]:
コード例 #2
0
    return cond_a_nll_b(X, w, sort_by_wopt_var=True)


def cond_a_sample(r, c, w, T=0):
    return cond_a_sample_b(r, c, w, T, sort_by_wopt_var=True)


while True:
    a = Array(M, N)
    alpha_norm(a, 1.0)
    a.new_edge_covariate('x')[:, :] = np.random.normal(0, 1, (M, N))

    d = NonstationaryLogistic()
    d.beta['x'] = theta

    d.match_kappa(a, kappa_target)
    a.generate(d)

    f = NonstationaryLogistic()
    f.beta['x'] = None

    f.fit_conditional(a, T=T_fit, verbose=True)
    abs_err = abs(f.beta['x'] - d.beta['x'])
    if abs_err > min_error:
        print f.beta['x']
        break

theta_vec = np.linspace(theta_grid_min, theta_grid_max, theta_grid_G)
cmle_a_vec = np.empty_like(theta_vec)
cmle_is_vec = np.empty_like(theta_vec)
logkappa_cvsq = np.empty_like(theta_vec)
コード例 #3
0
    net.new_edge_covariate(name).from_binary_function_ind(f_x)


def f_x(i_1, i_2):
    return np.random.uniform(-np.sqrt(3), np.sqrt(3))


net.new_edge_covariate('x').from_binary_function_ind(f_x)

data_model = NonstationaryLogistic()
data_model.beta['x'] = theta
for name, block_theta in [('ll', 4.0), ('rr', 3.0), ('lr', -2.0)]:
    data_model.beta[name] = block_theta
alpha_norm(net, alpha_sd)
data_model.match_kappa(net, ('row_sum', 2))
net.generate(data_model)
net.show_heatmap()
net.offset_extremes()

fit_base_model = NonstationaryLogistic()
fit_base_model.beta['x'] = None
fit_model = Blockmodel(fit_base_model, 2)
#fit_model.base_model.fit = fit_model.base_model.fit_conditional

# Initialize block assignments
net.new_node_covariate_int('z')
if from_truth:
    net.node_covariates['z'][:] = net.node_covariates['value'][:]
else:
    net.node_covariates['z'][:] = np.random.random(N) < 0.5
コード例 #4
0
alpha_norm(net, alpha_sd)

# Setup data model and network covariates
data_model = NonstationaryLogistic()
covariates = []
for name in theta_true:
    covariates.append(name)

    data_model.beta[name] = theta_true[name]

    def f_x(i_1, i_2):
        return np.random.normal(0, 1.0)
    net.new_edge_covariate(name).from_binary_function_ind(f_x)

# Instantiate network according to data model
data_model.match_kappa(net, ('row_sum', target_degree))
net.generate(data_model)
#net.show_heatmap(order_by_row = 'alpha_out')
#net.show_heatmap(order_by_col = 'alpha_in')

# Display network
plt.figure(figsize = (11, 3.2))
plt.subplot(141)
plt.title('Network')
graph = nx.DiGraph()
A = net.as_dense()
for i in range(N):
    graph.add_node(i)
for i in range(N):
    for j in range(N):
        if A[i,j]:
コード例 #5
0
data_model = NonstationaryLogistic()
covariates = []
for b in range(params['B']):
    name = 'x_%d' % b
    covariates.append(name)

    if name in params['beta_fixed']:
        data_model.beta[name] = params['beta_fixed'][name]
    else:
        data_model.beta[name] = np.random.normal(0, params['beta_sd'])

    def f_x(i_1, i_2):
        return np.random.uniform(-np.sqrt(3), np.sqrt(3))

    arr.new_edge_covariate(name).from_binary_function_ind(f_x)
data_model.match_kappa(arr, params['kappa_target'])

# Specify parameter of interest that  the confidence interval will try
# to capture
for c in params['covariates_of_interest']:
    theta_true = data_model.beta[c]
    print '%s theta_true: %.2f' % (c, theta_true)

# Setup fit model
if params['fit_method'] == 'conditional':
    fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None
    fit_model.generate = fit_model.generate_margins
    fit_model.fit = fit_model.fit_conditional
else:
コード例 #6
0
def do_experiment(params):
    if params['dump_fits'] and params['load_fits']:
        print 'Warning: simultaneously dumping and loading is a bad idea.'

    if params['dump_fits']:
        fits = []

    if params['load_fits']:
        with open(params['load_fits'], 'r') as fits_file:
            loaded_params_pick, loaded_fits = json.load(fits_file)

        loaded_params = dict([(k, unpick(v)) for (k, v) in loaded_params_pick])

        # Compare on parameters that control data generation and inference
        run_params = [
            'N', 'B', 'theta_sd', 'theta_fixed', 'alpha_unif_sd',
            'alpha_norm_sd', 'alpha_gamma_sd', 'cov_unif_sd', 'cov_norm_sd',
            'cov_disc_sd', 'kappa_target', 'pre_offset', 'post_fit',
            'fit_nonstationary', 'fit_method', 'num_reps', 'is_T', 'sampling',
            'sub_sizes_r', 'sub_sizes_c', 'random_seed'
        ]

        for p in run_params:
            if not np.all(loaded_params[p] == params[p]):
                print 'Warning: load mismatch on', p

    # Set random seed for reproducible output
    seed = Seed(params['random_seed'])

    # Initialize full network
    arr = Network(params['N'])

    # Generate node-level propensities to extend and receive edges
    if params['alpha_norm_sd'] > 0.0:
        alpha_norm(arr, params['alpha_norm_sd'])
    elif params['alpha_unif_sd'] > 0.0:
        alpha_unif(arr, params['alpha_unif_sd'])
    elif params['alpha_gamma_sd'] > 0.0:
        # Choosing location somewhat arbitrarily to give unit skewness
        alpha_gamma(arr, 4.0, params['alpha_gamma_sd'])
    else:
        alpha_zero(arr)

    # Generate covariates and associated coefficients
    data_model = NonstationaryLogistic()
    covariates = []
    for b in range(params['B']):
        name = 'x_%d' % b
        covariates.append(name)

        if name in params['theta_fixed']:
            data_model.beta[name] = params['theta_fixed'][name]
        else:
            data_model.beta[name] = np.random.normal(0, params['theta_sd'])

        if params['cov_unif_sd'] > 0.0:
            c = np.sqrt(12) / 2

            def f_x(i_1, i_2):
                return np.random.uniform(-c * params['cov_unif_sd'],
                                         c * params['cov_unif_sd'])
        elif params['cov_norm_sd'] > 0.0:

            def f_x(i_1, i_2):
                return np.random.normal(0, params['cov_norm_sd'])
        elif params['cov_disc_sd'] > 0.0:

            def f_x(i_1, i_2):
                return (params['cov_disc_sd'] *
                        (np.sign(np.random.random() - 0.5)))
        else:
            print 'Error: no covariate distribution specified.'
            sys.exit()

        arr.new_edge_covariate(name).from_binary_function_ind(f_x)

    # Generate large network, if necessary
    if not params['sampling'] == 'new':
        data_model.match_kappa(arr, params['kappa_target'])
        arr.generate(data_model)

    if params['fit_nonstationary']:
        fit_model = NonstationaryLogistic()
    else:
        fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None

    # Set up recording of results from experiment
    results = Results(params['sub_sizes_r'],
                      params['sub_sizes_c'],
                      params['num_reps'],
                      interactive=params['interactive'])
    add_array_stats(results)
    if params['plot_sig']:
        from scipy.stats import chi2
        crit = lambda dof: -0.5 * chi2.ppf(0.95, dof)

        umle_f = lambda n, f: f.nll(n, ignore_offset=True)
        umle_d = lambda n, d: d.nll(n, ignore_offset=True)
        umle_n = lambda n: NonstationaryLogistic().nll(n, ignore_offset=True)
        results.new('UMLE F-N', 'nm', lambda n, d, f: umle_f(n, f) - umle_n(n))
        results.new('UMLE F-D', 'nm',
                    lambda n, d, f: umle_f(n, f) - umle_d(n, d))

        cmle_a_f = lambda n, f: acnll(n.as_dense(),
                                      np.exp(f.edge_probabilities(n)))
        cmle_a_d = lambda n, d: acnll(n.as_dense(),
                                      np.exp(d.edge_probabilities(n)))
        cmle_a_n = lambda n: acnll(n.as_dense(), np.ones_like(n.as_dense()))
        results.new('CMLE-A F-N', 'nm',
                    lambda n, d, f: cmle_a_f(n, f) - cmle_a_n(n))
        results.new('CMLE-A F-D', 'nm',
                    lambda n, d, f: cmle_a_f(n, f) - cmle_a_d(n, d))

        cmle_is_f = lambda n, f: f.fit_conditional(n, evaluate=True, T=50)
        cmle_is_d = lambda n, d: d.fit_conditional(n, evaluate=True, T=50)
        cmle_is_n = lambda n: NonstationaryLogistic().fit_conditional(
            n, evaluate=True, T=50)
        results.new('CMLE-IS F-N', 'nm',
                    lambda n, d, f: cmle_is_f(n, f) - cmle_is_n(n))
        results.new('CMLE-IS F-D', 'nm',
                    lambda n, d, f: cmle_is_f(n, f) - cmle_is_d(n, d))

        c_cmle_f = lambda n, f: f.fit_c_conditional(n, evaluate=True)
        c_cmle_d = lambda n, d: d.fit_c_conditional(n, evaluate=True)
        c_cmle_n = lambda n: NonstationaryLogistic().fit_c_conditional(
            n, evaluate=True)
        results.new('C-CMLE F-N', 'nm',
                    lambda n, d, f: c_cmle_f(n, f) - c_cmle_n(n))
        results.new('C-CMLE F-D', 'nm',
                    lambda n, d, f: c_cmle_f(n, f) - c_cmle_d(n, d))

        results.new('UMLE sig.', 'dof', lambda M, N, B: crit((M - 1) +
                                                             (N - 1) + 1 + B))
        results.new('CMLE sig.', 'dof', lambda M, N, B: crit(B))
        results.new('C-CMLE sig.', 'dof', lambda M, N, B: crit((M - 1) + B))

    if params['sampling'] == 'new':
        results.new('Subnetwork kappa', 'm', lambda d, f: d.kappa)

    def true_est_theta_c(c):
        return (lambda d, f: d.beta[c]), (lambda d, f: f.beta[c])

    for c in covariates:
        # Need to do this hackily to avoid for-loop/lambda-binding weirdness.
        f_true, f_est = true_est_theta_c(c)
        results.new('True theta_{%s}' % c, 'm', f_true)
        results.new('Est. theta_{%s}' % c, 'm', f_est)
    if params['pre_offset'] or params['post_fit']:
        results.new('# Active', 'n',
                    lambda n: np.isfinite(n.offset.matrix()).sum())
    else:
        results.new('# Active', 'n', lambda n: n.M * n.N)
    if params['fisher_information']:

        def info_theta_c(c):
            def f_info_theta_c(d, f):
                return d.I_inv['theta_{%s}' % c]

            return f_info_theta_c

        for c in covariates:
            results.new('Info theta_{%s}' % c, 'm', info_theta_c(c))
    if params['baseline']:

        def rel_mse_p_ij(n, d, f):
            P = d.edge_probabilities(n)
            return rel_mse(f.edge_probabilities(n), f.baseline(n), P)

        results.new('Rel. MSE(P_ij)', 'nm', rel_mse_p_ij)
        if not (params['pre_offset'] or params['post_fit']):

            def rel_mse_logit_p_ij(n, d, f):
                logit_P = d.edge_probabilities(n, logit=True)
                logit_Q = f.baseline_logit(n)
                return rel_mse(f.edge_probabilities(n, logit=True), logit_Q,
                               logit_P)

            results.new('Rel. MSE(logit P_ij)', 'nm', rel_mse_logit_p_ij)

    if params['fit_method'] in [
            'convex_opt', 'conditional', 'c_conditional', 'irls',
            'conditional_is'
    ]:
        results.new('Wall time (sec.)', 'm',
                    lambda d, f: f.fit_info['wall_time'])
    if params['fit_method'] in ['convex_opt', 'conditional', 'conditional_is']:

        def work(f):
            w = 0
            for work_type in ['nll_evals', 'grad_nll_evals', 'cnll_evals']:
                if work_type in f.fit_info:
                    w += f.fit_info[work_type]
            return w

        results.new('Work', 'm', lambda d, f: work(f))
        results.new('||ET_final - T||_2', 'm',
                    lambda d, f: l2(f.fit_info['grad_nll_final']))

    for sub_size in zip(results.M_sizes, results.N_sizes):
        print 'subnetwork size =', sub_size

        if params['sampling'] == 'new':
            gen = RandomSubnetworks(arr, sub_size)
        else:
            gen = RandomSubnetworks(arr, sub_size, method=params['sampling'])

        for rep in range(params['num_reps']):
            seed.next()
            sub = gen.sample()

            if params['fisher_information']:
                data_model.fisher_information(sub)

            if params['sampling'] == 'new':
                data_model.match_kappa(sub, params['kappa_target'])
                sub.generate(data_model)

            if params['load_fits']:
                fit, loaded_fits = loaded_fits[0], loaded_fits[1:]
                fit_model.beta = unpick(fit['theta'])
                if params['fix_broken_cmle_is']:
                    for b_n in fit_model.beta:
                        fit_model.beta[b_n] += 0.1474
                if 'alpha' in fit:
                    sub.row_covariates['alpha_out'] = unpick(fit['alpha'])
                if 'beta' in fit:
                    sub.col_covariates['alpha_in'] = unpick(fit['beta'])
                if 'kappa' in fit:
                    fit_model.kappa = fit['kappa']
                if 'offset' in fit:
                    sub.offset = unpick(fit['offset'])
                if 'fit_info' in fit:
                    fit_model.fit_info = unpick(fit['fit_info'])
            else:
                if params['pre_offset']:
                    sub.offset_extremes()

                if params['fit_method'] == 'convex_opt':
                    fit_model.fit_convex_opt(sub, verbose=params['verbose'])
                elif params['fit_method'] == 'irls':
                    fit_model.fit_irls(sub, verbose=params['verbose'])
                elif params['fit_method'] == 'logistic':
                    fit_model.fit_logistic(sub)
                elif params['fit_method'] == 'logistic_l2':
                    fit_model.fit_logistic_l2(sub, prior_precision=1.0)
                elif params['fit_method'] == 'conditional':
                    fit_model.fit_conditional(sub, verbose=params['verbose'])
                elif params['fit_method'] == 'conditional_is':
                    fit_model.fit_conditional(sub,
                                              T=params['is_T'],
                                              verbose=params['verbose'])
                elif params['fit_method'] == 'c_conditional':
                    fit_model.fit_c_conditional(sub, verbose=params['verbose'])
                elif params['fit_method'] == 'composite':
                    fit_model.fit_composite(sub,
                                            T=100,
                                            verbose=params['verbose'])
                elif params['fit_method'] == 'brazzale':
                    fit_model.fit_brazzale(sub)
                elif params['fit_method'] == 'saddlepoint':
                    fit_model.fit_saddlepoint(sub)
                elif params['fit_method'] == 'none':
                    pass

                if params['post_fit']:
                    sub.offset_extremes()
                    fit_model.fit_convex_opt(sub, fix_beta=True)

                if params['dump_fits']:
                    fit = {}
                    fit['theta'] = pick(fit_model.beta)
                    if 'alpha_out' in sub.row_covariates:
                        fit['alpha'] = pick(sub.row_covariates['alpha_out'])
                    if 'alpha_in' in sub.row_covariates:
                        fit['beta'] = pick(sub.col_covariates['alpha_in'])
                    if not fit_model.kappa is None:
                        fit['kappa'] = fit_model.kappa
                    if not sub.offset is None:
                        sub.offset.dirty()
                        fit['offset'] = pick(sub.offset)
                    if not fit_model.fit_info is None:
                        fit['fit_info'] = pick(fit_model.fit_info)

                    fits.append(fit)

            if params['find_good'] > 0:
                abs_err = abs(fit_model.beta['x_0'] - data_model.beta['x_0'])
                if abs_err < params['find_good']:
                    print abs_err

                    sub.offset = None
                    fit_model.fit_conditional(sub, T=1000, verbose=True)
                    print fit_model.beta['x_0']
                    print fit_model.fit_info

                    f = file('goodmat.mat', 'wb')
                    import scipy.io
                    Y = np.array(sub.as_dense(), dtype=np.float)
                    X = sub.edge_covariates['x_0'].matrix()
                    scipy.io.savemat(f, {'Y': Y, 'X': X})
                    sys.exit()

            if params['find_bad'] > 0:
                abs_err = abs(fit_model.beta['x_0'] - data_model.beta['x_0'])
                if abs_err > params['find_bad']:
                    print abs_err

                    sub.offset = None
                    fit_model.fit_conditional(sub, T=1000, verbose=True)
                    print fit_model.beta['x_0']
                    print fit_model.fit_info

                    f = file('badmat.mat', 'wb')
                    import scipy.io
                    Y = np.array(sub.as_dense(), dtype=np.float)
                    X = sub.edge_covariates['x_0'].matrix()
                    scipy.io.savemat(f, {'Y': Y, 'X': X})
                    sys.exit()

            results.record(sub_size, rep, sub, data_model, fit_model)

            if params['verbose']:
                print

    if params['dump_fits']:
        with open(params['dump_fits'], 'w') as outfile:
            json.dump(([(p, pick(params[p])) for p in params], fits), outfile)

    # Compute beta MSEs
    covariate_naming = []
    for c in covariates:
        mse_name = 'MSE(theta_{%s})' % c
        true_name = 'True theta_{%s}' % c
        est_name = 'Est. theta_{%s}' % c
        results.estimate_mse(mse_name, true_name, est_name)
        covariate_naming.append((c, mse_name, true_name, est_name))

    # Report parameters for the run
    print 'Parameters:'
    for field in params:
        print '%s: %s' % (field, str(params[field]))

    # Should not vary between runs with the same seed and same number
    # of arrays tested
    seed.final()

    results.summary()

    return results, covariate_naming
コード例 #7
0
# Generate covariates and associated coefficients
data_model = NonstationaryLogistic()
covariates = []
for b in range(params['B']):
    name = 'x_%d' % b
    covariates.append(name)

    if name in params['beta_fixed']:
        data_model.beta[name] = params['beta_fixed'][name]
    else:
        data_model.beta[name] = np.random.normal(0, params['beta_sd'])

    def f_x(i_1, i_2):
        return np.random.uniform(-np.sqrt(3), np.sqrt(3))
    arr.new_edge_covariate(name).from_binary_function_ind(f_x)
data_model.match_kappa(arr, params['kappa_target'])

# Specify parameter of interest that the confidence interval will try to capture
for c in params['covariates_of_interest']:
    theta_true = data_model.beta[c]
    print '%s theta_true: %.2f' % (c, theta_true)

# Setup fit model
if params['fit_method'] == 'conditional':
    fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None
    fit_model.generate = fit_model.generate_margins
    fit_model.fit = fit_model.fit_conditional
else:
    if params['fit_nonstationary']:
コード例 #8
0
kappa_target = ('row_sum', 2)
alpha_sd = 2.0
n_rep = 100
n_boot = 10
alpha_level = 0.05

net = Network(N)
alpha_norm(net, alpha_sd)
for d in range(D):
    net.new_edge_covariate('x_%d' % d)[:,:] = np.random.normal(0, 1, (N, N))

data_model = NonstationaryLogistic()
for d in range(D):
    data_model.beta['x_%d' % d] = np.random.normal(0, 1)
data_model.beta['x_0'] = theta
data_model.match_kappa(net, kappa_target)

s_fit = StationaryLogistic()
ns_fit = NonstationaryLogistic()
for d in range(D):
    s_fit.beta['x_%d' % d] = None
    ns_fit.beta['x_%d' % d] = None

def safe_ci(model, name, method):
    if name in model.conf:
        if method in model.conf[name]:
            return model.conf[name][method]
    else:
        return (0.0, 0.0)

braz_covered = 0
コード例 #9
0
def cond_a_nll(X, w):
    return cond_a_nll_b(X, w, sort_by_wopt_var = True)

def cond_a_sample(r, c, w, T = 0):
    return cond_a_sample_b(r, c, w, T, sort_by_wopt_var = True)

while True:
    a = Array(M, N)
    alpha_norm(a, 1.0)
    a.new_edge_covariate('x')[:,:] = np.random.normal(0, 1, (M, N))

    d = NonstationaryLogistic()
    d.beta['x'] = theta

    d.match_kappa(a, kappa_target)
    a.generate(d)

    f = NonstationaryLogistic()
    f.beta['x'] = None

    f.fit_conditional(a, T = T_fit, verbose = True)
    abs_err = abs(f.beta['x'] - d.beta['x'])
    if abs_err > min_error:
        print f.beta['x']
        break

theta_vec = np.linspace(theta_grid_min, theta_grid_max, theta_grid_G)
cmle_a_vec = np.empty_like(theta_vec)
cmle_is_vec = np.empty_like(theta_vec)
logkappa_cvsq = np.empty_like(theta_vec)
コード例 #10
0
                (net.node_covariates['value'][i_2] == v_2))

    net.new_edge_covariate(name).from_binary_function_ind(f_x)

def f_x(i_1, i_2):
    return np.random.uniform(-np.sqrt(3), np.sqrt(3))
net.new_edge_covariate('x').from_binary_function_ind(f_x)
        
data_model = NonstationaryLogistic()
data_model.beta['x'] = theta
for name, block_theta in [('ll', 4.0),
                          ('rr', 3.0),
                          ('lr', -2.0)]:
    data_model.beta[name] = block_theta
alpha_norm(net, alpha_sd)
data_model.match_kappa(net, ('row_sum', 2))
net.generate(data_model)
net.show_heatmap()
net.offset_extremes()

fit_base_model = NonstationaryLogistic()
fit_base_model.beta['x'] = None
fit_model = Blockmodel(fit_base_model, 2)
#fit_model.base_model.fit = fit_model.base_model.fit_conditional

# Initialize block assignments
net.new_node_covariate_int('z')
if from_truth:
    net.node_covariates['z'][:] = net.node_covariates['value'][:]
else:
    net.node_covariates['z'][:] = np.random.random(N) < 0.5
コード例 #11
0
        if degree_het == 'Normal':
            alpha_norm(net, het_sd)
        if degree_het == 'Gamma':
            alpha_gamma(net, 4.0, het_sd)
        if degree_het == 'Uniform':
            alpha_unif(net, het_sd)

        for k, sub_size in enumerate(sub_sizes):
            size = (sub_size, sub_size)
            gen = RandomSubnetworks(net, size)

            for l in range(reps):
                print degree_het, het_sd, size, l

                subnet = gen.sample()
                model.match_kappa(subnet, kappa_target)
                subnet.generate(model)

                subnet.offset_extremes()

                active = np.isfinite(subnet.offset.matrix()).sum()

                if degree_het == 'None':
                    data_none[k, l] = active
                else:
                    data_het[i, j, k, l] = active

plt.figure()
plt.title('None')
plt.xlabel('Network size')
plt.ylabel('#Active')
コード例 #12
0
def do_experiment(params):
    if params['dump_fits'] and params['load_fits']:
        print 'Warning: simultaneously dumping and loading is a bad idea.'
        
    if params['dump_fits']:
        fits = []

    if params['load_fits']:
        with open(params['load_fits'], 'r') as fits_file:
            loaded_params_pick, loaded_fits = json.load(fits_file)

        loaded_params = dict([(k,unpick(v)) for (k,v) in loaded_params_pick])

        # Compare on parameters that control data generation and inference
        run_params = ['N', 'B', 'theta_sd', 'theta_fixed',
                      'alpha_unif_sd', 'alpha_norm_sd', 'alpha_gamma_sd',
                      'cov_unif_sd', 'cov_norm_sd', 'cov_disc_sd',
                      'kappa_target', 'pre_offset', 'post_fit',
                      'fit_nonstationary', 'fit_method', 'num_reps',
                      'is_T', 'sampling', 'sub_sizes_r', 'sub_sizes_c',
                      'random_seed']

        for p in run_params:
            if not np.all(loaded_params[p] == params[p]):
                print 'Warning: load mismatch on', p
    
    # Set random seed for reproducible output
    seed = Seed(params['random_seed'])

    # Initialize full network
    arr = Network(params['N'])

    # Generate node-level propensities to extend and receive edges
    if params['alpha_norm_sd'] > 0.0:
        alpha_norm(arr, params['alpha_norm_sd'])
    elif params['alpha_unif_sd'] > 0.0:
        alpha_unif(arr, params['alpha_unif_sd'])
    elif params['alpha_gamma_sd'] > 0.0:
        # Choosing location somewhat arbitrarily to give unit skewness
        alpha_gamma(arr, 4.0, params['alpha_gamma_sd'])
    else:
        alpha_zero(arr)

    # Generate covariates and associated coefficients
    data_model = NonstationaryLogistic()
    covariates = []
    for b in range(params['B']):
        name = 'x_%d' % b
        covariates.append(name)

        if name in params['theta_fixed']:
            data_model.beta[name] = params['theta_fixed'][name]
        else:
            data_model.beta[name] = np.random.normal(0, params['theta_sd'])

        if params['cov_unif_sd'] > 0.0:
            c = np.sqrt(12) / 2
            def f_x(i_1, i_2):
                return np.random.uniform(-c * params['cov_unif_sd'],
                                         c * params['cov_unif_sd'])
        elif params['cov_norm_sd'] > 0.0:
            def f_x(i_1, i_2):
                return np.random.normal(0, params['cov_norm_sd'])
        elif params['cov_disc_sd'] > 0.0:
            def f_x(i_1, i_2):
                return (params['cov_disc_sd'] *
                        (np.sign(np.random.random() - 0.5)))
        else:
            print 'Error: no covariate distribution specified.'
            sys.exit()

        arr.new_edge_covariate(name).from_binary_function_ind(f_x)

    # Generate large network, if necessary
    if not params['sampling'] == 'new':
        data_model.match_kappa(arr, params['kappa_target'])
        arr.generate(data_model)

    if params['fit_nonstationary']:
        fit_model = NonstationaryLogistic()
    else:
        fit_model = StationaryLogistic()
    for c in covariates:
        fit_model.beta[c] = None

    # Set up recording of results from experiment
    results = Results(params['sub_sizes_r'], params['sub_sizes_c'],
                      params['num_reps'], interactive = params['interactive'])
    add_array_stats(results)
    if params['plot_sig']:
        from scipy.stats import chi2
        crit = lambda dof: -0.5 * chi2.ppf(0.95, dof)

        umle_f = lambda n, f: f.nll(n, ignore_offset = True)
        umle_d = lambda n, d: d.nll(n, ignore_offset = True)
        umle_n = lambda n: NonstationaryLogistic().nll(n, ignore_offset = True)
        results.new('UMLE F-N', 'nm',
                    lambda n, d, f: umle_f(n, f) - umle_n(n))
        results.new('UMLE F-D', 'nm',
                    lambda n, d, f: umle_f(n, f) - umle_d(n, d))

        cmle_a_f = lambda n, f: acnll(n.as_dense(), np.exp(f.edge_probabilities(n)))
        cmle_a_d = lambda n, d: acnll(n.as_dense(), np.exp(d.edge_probabilities(n)))
        cmle_a_n = lambda n: acnll(n.as_dense(), np.ones_like(n.as_dense()))
        results.new('CMLE-A F-N', 'nm',
                    lambda n, d, f: cmle_a_f(n, f) - cmle_a_n(n))
        results.new('CMLE-A F-D', 'nm',
                    lambda n, d, f: cmle_a_f(n, f) - cmle_a_d(n, d))

        cmle_is_f = lambda n, f: f.fit_conditional(n, evaluate = True, T = 50)
        cmle_is_d = lambda n, d: d.fit_conditional(n, evaluate = True, T = 50)
        cmle_is_n = lambda n: NonstationaryLogistic().fit_conditional(n, evaluate = True, T = 50)
        results.new('CMLE-IS F-N', 'nm',
                    lambda n, d, f: cmle_is_f(n, f) - cmle_is_n(n))
        results.new('CMLE-IS F-D', 'nm',
                    lambda n, d, f: cmle_is_f(n, f) - cmle_is_d(n, d))

        c_cmle_f = lambda n, f: f.fit_c_conditional(n, evaluate = True)
        c_cmle_d = lambda n, d: d.fit_c_conditional(n, evaluate = True)
        c_cmle_n = lambda n: NonstationaryLogistic().fit_c_conditional(n, evaluate = True)
        results.new('C-CMLE F-N', 'nm',
                    lambda n, d, f: c_cmle_f(n, f) - c_cmle_n(n))
        results.new('C-CMLE F-D', 'nm',
                    lambda n, d, f: c_cmle_f(n, f) - c_cmle_d(n, d))

        results.new('UMLE sig.', 'dof',
                    lambda M, N, B: crit((M - 1) + (N - 1) + 1 + B))
        results.new('CMLE sig.', 'dof', lambda M, N, B: crit(B))
        results.new('C-CMLE sig.', 'dof', lambda M, N, B: crit((M - 1) + B))

    if params['sampling'] == 'new':
        results.new('Subnetwork kappa', 'm', lambda d, f: d.kappa)
    def true_est_theta_c(c):
        return (lambda d, f: d.beta[c]), (lambda d, f: f.beta[c])
    for c in covariates:
        # Need to do this hackily to avoid for-loop/lambda-binding weirdness.
        f_true, f_est = true_est_theta_c(c)
        results.new('True theta_{%s}' % c, 'm', f_true)
        results.new('Est. theta_{%s}' % c, 'm', f_est)
    if params['pre_offset'] or params['post_fit']:
        results.new('# Active', 'n',
                    lambda n: np.isfinite(n.offset.matrix()).sum())
    else:
        results.new('# Active', 'n', lambda n: n.M * n.N)
    if params['fisher_information']:
        def info_theta_c(c):
            def f_info_theta_c(d, f):
                return d.I_inv['theta_{%s}' % c]
            return f_info_theta_c
        for c in covariates:
            results.new('Info theta_{%s}' % c, 'm', info_theta_c(c))
    if params['baseline']:
        def rel_mse_p_ij(n, d, f):
            P = d.edge_probabilities(n)
            return rel_mse(f.edge_probabilities(n), f.baseline(n), P)
        results.new('Rel. MSE(P_ij)', 'nm', rel_mse_p_ij)
        if not (params['pre_offset'] or params['post_fit']):
            def rel_mse_logit_p_ij(n, d, f):
                logit_P = d.edge_probabilities(n, logit = True)
                logit_Q = f.baseline_logit(n)
                return rel_mse(f.edge_probabilities(n, logit = True),
                               logit_Q, logit_P)
            results.new('Rel. MSE(logit P_ij)', 'nm', rel_mse_logit_p_ij)

    if params['fit_method'] in ['convex_opt', 'conditional', 'c_conditional',
                                'irls', 'conditional_is']:
        results.new('Wall time (sec.)', 'm',
                    lambda d, f: f.fit_info['wall_time'])
    if params['fit_method'] in ['convex_opt',
                                'conditional', 'conditional_is']:
        def work(f):
            w = 0
            for work_type in ['nll_evals', 'grad_nll_evals', 'cnll_evals']:
                if work_type in f.fit_info:
                    w += f.fit_info[work_type]
            return w
        results.new('Work', 'm', lambda d, f: work(f))
        results.new('||ET_final - T||_2', 'm',
                    lambda d, f: l2(f.fit_info['grad_nll_final']))

    for sub_size in zip(results.M_sizes, results.N_sizes):
        print 'subnetwork size =', sub_size

        if params['sampling'] == 'new':
            gen = RandomSubnetworks(arr, sub_size)
        else:
            gen = RandomSubnetworks(arr, sub_size,
                                    method = params['sampling'])

        for rep in range(params['num_reps']):
            seed.next()
            sub = gen.sample()

            if params['fisher_information']:
                data_model.fisher_information(sub)

            if params['sampling'] == 'new':
                data_model.match_kappa(sub, params['kappa_target'])
                sub.generate(data_model)

            if params['load_fits']:
                fit, loaded_fits = loaded_fits[0], loaded_fits[1:]
                fit_model.beta = unpick(fit['theta'])
                if params['fix_broken_cmle_is']:
                    for b_n in fit_model.beta:
                        fit_model.beta[b_n] += 0.1474
                if 'alpha' in fit:
                    sub.row_covariates['alpha_out'] = unpick(fit['alpha'])
                if 'beta' in fit:
                    sub.col_covariates['alpha_in'] = unpick(fit['beta'])
                if 'kappa' in fit:
                    fit_model.kappa = fit['kappa']
                if 'offset' in fit:
                    sub.offset = unpick(fit['offset'])
                if 'fit_info' in fit:
                    fit_model.fit_info = unpick(fit['fit_info'])
            else:
                if params['pre_offset']:
                    sub.offset_extremes()

                if params['fit_method'] == 'convex_opt':
                    fit_model.fit_convex_opt(sub,
                                             verbose = params['verbose'])
                elif params['fit_method'] == 'irls':
                    fit_model.fit_irls(sub, verbose = params['verbose'])
                elif params['fit_method'] == 'logistic':
                    fit_model.fit_logistic(sub)
                elif params['fit_method'] == 'logistic_l2':
                    fit_model.fit_logistic_l2(sub, prior_precision = 1.0)
                elif params['fit_method'] == 'conditional':
                    fit_model.fit_conditional(sub,
                                              verbose = params['verbose'])
                elif params['fit_method'] == 'conditional_is':
                    fit_model.fit_conditional(sub, T = params['is_T'],
                                              verbose = params['verbose'])
                elif params['fit_method'] == 'c_conditional':
                    fit_model.fit_c_conditional(sub,
                                                verbose = params['verbose'])
                elif params['fit_method'] == 'composite':
                    fit_model.fit_composite(sub, T = 100,
                                            verbose = params['verbose'])
                elif params['fit_method'] == 'brazzale':
                    fit_model.fit_brazzale(sub)
                elif params['fit_method'] == 'saddlepoint':
                    fit_model.fit_saddlepoint(sub)
                elif params['fit_method'] == 'none':
                    pass

                if params['post_fit']:
                    sub.offset_extremes()
                    fit_model.fit_convex_opt(sub, fix_beta = True)

                if params['dump_fits']:
                    fit = {}
                    fit['theta'] = pick(fit_model.beta)
                    if 'alpha_out' in sub.row_covariates:
                        fit['alpha'] = pick(sub.row_covariates['alpha_out'])
                    if 'alpha_in' in sub.row_covariates:
                        fit['beta'] = pick(sub.col_covariates['alpha_in'])
                    if not fit_model.kappa is None:
                        fit['kappa'] = fit_model.kappa
                    if not sub.offset is None:
                        sub.offset.dirty()
                        fit['offset'] = pick(sub.offset)
                    if not fit_model.fit_info is None:
                        fit['fit_info'] = pick(fit_model.fit_info)

                    fits.append(fit)

            if params['find_good'] > 0:
                abs_err = abs(fit_model.beta['x_0'] - data_model.beta['x_0'])
                if abs_err < params['find_good']:
                    print abs_err

                    sub.offset = None
                    fit_model.fit_conditional(sub, T = 1000,
                                              verbose = True)
                    print fit_model.beta['x_0']
                    print fit_model.fit_info

                    f = file('goodmat.mat', 'wb')
                    import scipy.io
                    Y = np.array(sub.as_dense(), dtype=np.float)
                    X = sub.edge_covariates['x_0'].matrix()
                    scipy.io.savemat(f, { 'Y': Y, 'X': X })
                    sys.exit()

            if params['find_bad'] > 0:
                abs_err = abs(fit_model.beta['x_0'] - data_model.beta['x_0'])
                if abs_err > params['find_bad']:
                    print abs_err

                    sub.offset = None
                    fit_model.fit_conditional(sub, T = 1000,
                                              verbose = True)
                    print fit_model.beta['x_0']
                    print fit_model.fit_info

                    f = file('badmat.mat', 'wb')
                    import scipy.io
                    Y = np.array(sub.as_dense(), dtype=np.float)
                    X = sub.edge_covariates['x_0'].matrix()
                    scipy.io.savemat(f, { 'Y': Y, 'X': X })
                    sys.exit()

            results.record(sub_size, rep, sub, data_model, fit_model)

            if params['verbose']:
                print

    if params['dump_fits']:
        with open(params['dump_fits'], 'w') as outfile:
            json.dump(([(p, pick(params[p])) for p in params], fits), outfile)

    # Compute beta MSEs
    covariate_naming = []
    for c in covariates:
        mse_name = 'MSE(theta_{%s})' % c
        true_name = 'True theta_{%s}' % c
        est_name = 'Est. theta_{%s}' % c
        results.estimate_mse(mse_name, true_name, est_name)
        covariate_naming.append((c, mse_name, true_name, est_name))

    # Report parameters for the run
    print 'Parameters:'
    for field in params:
        print '%s: %s' % (field, str(params[field]))

    # Should not vary between runs with the same seed and same number
    # of arrays tested
    seed.final()

    results.summary()

    return results, covariate_naming