コード例 #1
0
def NeighborIndex(pos_A, pos_B):

    #用邻居原则来判断
    #A,B各自的邻居
    neighbor_A = [(pos_A[0] + step_x, pos_A[1] + step_y)
                  for step_x in [-1, 0, 1] for step_y in [-1, 0, 1]]
    neighbor_B = [(pos_B[0] + step_x, pos_B[1] + step_y)
                  for step_x in [-1, 0, 1] for step_y in [-1, 0, 1]]

    #    print(neighbor_A)
    #    print(neighbor_B)

    #判断是否在各自的8邻域内
    A_in_B = tuple(pos_A) in neighbor_B
    B_in_A = tuple(pos_B) in neighbor_A

    #必须都成立哦
    if not (A_in_B and B_in_A):

        print('this point is not available')

        return

    #通过位置建立索引
    code_list = [k for k in range(8)]
    relative_pos_list = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1),
                         (0, -1), (-1, -1)]

    #建立编码与位置的映射
    map_code_relative_pos = dict(zip(code_list, relative_pos_list))

    #如果为AB邻居
    if A_in_B and B_in_A:

        pos_A = np.array(pos_A)
        pos_B = np.array(pos_B)

        #相对位置
        relative_pos_B2A = tuple(pos_B - pos_A)
        relative_pos_A2B = tuple(pos_A - pos_B)

        #位置编码
        code_B2A = Dict.DictKeyOfValue(map_code_relative_pos, relative_pos_B2A)
        code_A2B = Dict.DictKeyOfValue(map_code_relative_pos, relative_pos_A2B)

#        print('B:the position code',code_B2A,'of A')
#        print('A:the position code',code_A2B,'of B')

    return code_B2A, code_A2B
コード例 #2
0
def RGB2Tag(img_rgb, rgb_dict, show=False, axis=False):

    img_tag = np.zeros((np.shape(img_rgb)[0], np.shape(img_rgb)[1]))

    #给img_tag矩阵赋值
    for i in range(np.shape(img_tag)[0]):

        for j in range(np.shape(img_tag)[1]):

            img_tag[i,
                    j] = Dict.DictKeyOfValue(rgb_dict,
                                             list(img_rgb[i, j].astype(int)))

    #显示
    if show:

        plt.figure()
        plt.imshow(img_tag, cmap='gray')

        #显示坐标轴吗
        if axis:

            plt.axis('off')

    return img_tag
コード例 #3
0
def chipsOf(which_Chip, side):

    #先建立键值对
    #根据values的值返回chips对象
    map_J_total_chips = MapCenterchipsOf(which_Chip, 'J')

    #最左的即J最小的chips
    if side is 'left':

        return Dict.DictKeyOfValue(map_J_total_chips,
                                   min(list(map_J_total_chips.values())))

    #最右的即J最大的chips
    if side is 'right':

        return Dict.DictKeyOfValue(map_J_total_chips,
                                   max(list(map_J_total_chips.values())))
コード例 #4
0
def GetCorners(which_content,
               offset,
               energy_mode,
               img_tag,
               img_rgb,
               show=False):

    #滑动窗口求取梯度诶
    #平均值
    if energy_mode is 'mean':

        gradients = SlideGradient(AverageEnergy(which_content, 5, img_tag),
                                  offset)

    #最大值法
    if energy_mode is 'max':

        gradients = SlideGradient(MaximalEnergy(which_content, 5, img_tag),
                                  offset)

    #压制非极值点点,使它们为0
    peak_content = PickPeak(gradients, True)

    #寻找脉冲极值点的办法
    temp_peak_index = []

    for k in range(len(peak_content)):

        if peak_content[k] != 0:

            temp_peak_index.append(k)

    #极值窗口
    open_length = 10

    #在这个自定义区间内的都是极值
    temp_peak_index.sort()

    #定义一个字典
    #索引和周边索引的对应关系
    map_index_neighbor = {}

    #索引和他身边被录用的索引
    map_index_indexes = {}

    #开始创造其中元素
    for this_index in temp_peak_index:

        #单个的索引
        map_index_neighbor[this_index] = [
            this_index + k for k in range(-open_length, +open_length)
        ]

        #被录用的索引(肯定有自己)
        map_index_indexes[this_index] = []

    #判断每个索引和索隐门邻域的对应关系
    for this_index in temp_peak_index:

        for this_neighbor in list(map_index_neighbor.values()):

            #判断在哪里
            if this_index in this_neighbor:

                map_index_indexes[Dict.DictKeyOfValue(
                    map_index_neighbor, this_neighbor)].append(this_index)

    #print(map_index_indexes)

    #真假索引了
    temp_indexes = list(map_index_indexes.values())

    #真实的indexes集合
    indexes = []

    #唯一识别
    map_sum_indexes = {}

    #迭代合并同类项
    for this_indexes in temp_indexes:

        indexes.append(sorted(list(set(this_indexes))))

        #它们的和
        map_sum_indexes[sum(indexes[-1])] = indexes[-1]

    #print(indexes)
    #print(map_sum_indexes)

    #用于加工的indexes列表
    true_indexes = list(map_sum_indexes.values())

    #求取小区间里的最大值噢
    #消除偏移距之前的peak索引
    peak_index = []

    for this_indexes in true_indexes:

        #建立小区间内的索引与值的对应关系哦
        map_index_value = {}

        for this_index in this_indexes:

            map_index_value[this_index] = gradients[this_index]

        #找到最大值噢
        peak_value = np.max(list(map_index_value.values()))

        #获取最大值的索引
        peak_index.append(Dict.DictKeyOfValue(map_index_value, peak_value))

    #在gradients曲线上显示计算结果
    plt.figure()
    plt.plot(gradients)

    #画出峰值点吧
    for this_index in peak_index:

        plt.plot(this_index, gradients[this_index], marker='o', color='red')

    plt.axis('tight')

    #即将消除偏移距
    map_new_old_index = Dict.SortFromStart(which_content, offset)[1]

    #还原到真实的叻
    corner_index = [map_new_old_index[this_index] for this_index in peak_index]

    #在图像上还原真实的角点儿
    corner_points = [which_content[this_index] for this_index in corner_index]

    #显示吧
    if show:

        plt.figure()

        for this_pos in corner_points:

            Dis.ShowOnePoint(this_pos, img_rgb)

    return Dict.DictSortByIndex(dict(zip(corner_index, corner_points)),
                                sorted(corner_index))
コード例 #5
0
def SlideGradient(which_content, offset, show=False):

    #留一点边界消除边界效应
    boundary = 10

    #自己定义一个梯度核函数
    kernel_gradient = [-0.25, -0.5, 0, 0.5, 0.25]

    #定义gauss核函数作为平滑
    kernel_smooth = GaussianKernel(0, 1, 5)

    #判断kernel的臂展是否为奇数
    if len(kernel_gradient) % 2 != 1 and len(kernel_smooth) % 2 != 1:

        print('ERROR:redefine the window_size')

    else:

        #臂展
        kernel_length = len(kernel_gradient) // 2

        #梯度计算的结果
        gradients = []

        #临时content列表
        temp_content = Dict.SortFromStart(which_content, offset)[0]

        #        print(len(temp_content))

        #总的content列表,plus些许边界
        total_content = which_content[:
                                      offset] + temp_content + temp_content[:
                                                                            boundary]

        #        print(len(total_content))

        #直接迭代吧
        for index in range(len(which_content)):

            #            total_content[offset+k]

            #            print(index)
            #            print(kernel_length)

            #初始化它
            that_gradient = 0

            #这个核内部的数值有哪些
            this_points = [
                total_content[index + offset + ix]
                for ix in range(-kernel_length, kernel_length + 1)
            ]

            #对应相乘
            if len(this_points) == len(kernel_gradient) == len(kernel_smooth):

                for k in range(len(this_points)):

                    that_gradient += this_points[k] * kernel_gradient[
                        k] * kernel_smooth[k]

            gradients.append(abs(that_gradient))

#        print(len(which_content))
#        print(len(gradients))

#绘图
        if show:

            plt.figure()
            plt.subplot(211), plt.plot(temp_content)
            plt.subplot(212), plt.plot(gradients)

        return gradients
コード例 #6
0
def RecoverLength(total_fractions,
                  img_rgb,
                  img_tag,
                  rgb_dict,
                  animation_show=False,
                  show=False):
    
    #拾取出某个目标layer
    which_layer=Pick.PickLayer(total_fractions,img_rgb)
    
    #目标layer的edge
    which_edge=which_layer.edge
    
    '''HarrisM函数有问题'''
    #抓出几个角点
    #map_corner_points=Cor.GetCorners(which_content,100,'mean',img_tag,img_rgb,True)
    
    '''层长恢复'''
    #节省调试时间,直接给出答案
    #暴力增加角点
    map_corner_points=Cor.AddCorners(which_edge,4,img_rgb,True)   
    
    #初始化which_layer的角点
    which_layer.corners=list(map_corner_points.values())
    
    #计算曲线的长度
    layer_length=Geom.CurvedLinesLength(which_edge,map_corner_points,2,img_rgb)
    
    #初始化面积
    which_layer.InitArea()
    
    #层厚度(其实没什么意义)
    layer_thickness=which_layer.area/layer_length
    
    #初始化厚度和长度
    which_layer.thickness=layer_thickness
    which_layer.length=layer_length
    
    #相关联的断层可能多个
    """找出这个layer接壤的fault"""
    '''找到了,处理两侧都有断层的接应点情况'''
    which_faults=Pick.NeighborFault(which_layer,total_fractions)
    
#    print(len(which_faults))
    
    '''一个fault的情况'''
    if len(which_faults)==1:  
        
        #one and only
        which_fault=which_faults[0]
        
        #计算那几个角点哪几个离断层比较近
        corner_points=list(map_corner_points.values())
        
        #计算重心
        fault_center=Geom.CalculateBaryCenter(which_fault.content)
        
        #重心到几个角点的距离
        map_distances_fault2corners=Geom.DistancesMap(fault_center,corner_points)
        
        #距离最小的两个为接应点
        map_attachment_points=Dict.DictSortByIndex(map_distances_fault2corners,sorted(list(map_distances_fault2corners.keys())))
        
        #fraction上的两个接应点
        fraction_attachment_points=list(map_attachment_points.values())[0:2]
        
        #fraction取两个接应点的中点
        fraction_attachment_center=np.round(Geom.CalculateBaryCenter(fraction_attachment_points)).astype(int)
        
        #再去寻找fault上和接应点
        map_distances_attachment2fault=Geom.DistancesMap(fraction_attachment_center,which_fault.edge)
        
        #fault上的接应点
        fault_attachment_point=map_distances_attachment2fault[min(list(map_distances_attachment2fault.keys()))]
        
        #Dis.ShowOnePoint(fault_attachment_point,img_rgb)
        
        '''墙类型的填充函数(模型边界)'''
        #另一端的方向
        directional_offset=which_layer.center[1]-fault_attachment_point[1]
        
        #边界的i坐标
        i_boundary=fault_attachment_point[0]
        
        #左侧
        if directional_offset<0:
            
#            directional_mode='left'
           
            #增长的方向
            step_sign=+1
            
            #边界的j坐标
            j_boundary=fault_attachment_point[1]-layer_length
            
        #右侧
        if directional_offset>0:
            
#            directional_mode='right'   
            
            #增长的方向
            step_sign=-1
            
            #边界的坐标
            j_boundary=fault_attachment_point[1]+layer_length
        
        #边界的坐标
        boundary=np.round([i_boundary,j_boundary]).astype(int)
        
        #断层上接应点的索引
        if fault_attachment_point in which_fault.edge:
            
            fault_attachment_index=which_fault.edge.index(fault_attachment_point)
        
        #计数器
        count=1
        
        #需要描绘的点    
        #第一行
        points_to_draw=[[fault_attachment_point[0],j] for j in range(boundary[1],fault_attachment_point[1],step_sign)]
        
        #用于迭代的总面积
        temp_area=len(points_to_draw)
        
        #循环结束的标志
        flag=(temp_area>=which_layer.area)
        
        #建立一个新的tag矩阵
        img_tag_temp=np.zeros(np.shape(img_tag))
        
        #开始迭代
        while not flag:
            
            #本次迭代需要画出的点
            that_points_to_draw=[]
            
            count+=1
            
            #根据count的奇偶性确定增量的符号
            if count%2==0:
                
                sign=-1
                
            if count%2==1:
                
                sign=1
                
            #单向增量计数器
            index_increment=sign*count//2
        
        #    print(index_increment)
            
            #现在的接应点 
            that_attachment_point=which_fault.edge[fault_attachment_index+index_increment]
            
            #计算这一次迭代面积增量
#            area_increment=np.abs(that_attachment_point[1]-boundary[1])
                       
        #    print(area_increment)  
        #    print(temp_area,which_fraction.area)
            
            Print=False
            
            #图像中填充新增的那一行
            #根据边界与接应点的位置关系进行填充
            if Print:
                
                print('right')
                print(that_attachment_point)
            
    #            img_tag_temp[that_attachment_point[0],boundary[1]:that_attachment_point[1]]=which_fraction.tag    
         
            #将这些点添加至列表
            for j in range(boundary[1],that_attachment_point[1],step_sign):
                
    #            print('plus',j)
                that_points_to_draw.append([that_attachment_point[0],j])
                    
    #        print(img_tag_temp[that_attachment_point[0],boundary[1]:that_attachment_point[1]])
            
            #加进大集合里
            points_to_draw+=that_points_to_draw
            
            if animation_show:
                
                #把它们都绘制出
                for this_point in points_to_draw:
                    
                    img_tag_temp[this_point[0],this_point[1]]=which_layer.tag
                
                #让图片停留几秒钟之后关闭,可以是整数也可以是浮点数
                plt.imshow(Im.Tag2RGB(img_tag_temp,rgb_dict)) 
                plt.pause(1)
                plt.close()
            
            #临时面积
            temp_area=len(points_to_draw)
            
            #更新循环执行的条件
            flag=(temp_area>=which_layer.area)
            
    '''多个fault的情况'''
    if len(which_faults)>1: 
         
        #layer中点
        center=np.array(which_layer.center).astype(int)
    
        #当下接应点
        attachment_point=cp.deepcopy(center)
        
        '''以下内容要进入循环的噢'''
        
        #装所谓坐标的pocket
        pocket=[]
        
        #在layer的edge中找到一个横线确定以前的长度
        for this_pos in which_layer.edge:
            
            if this_pos[0]==attachment_point[0]:
                
                pocket.append(this_pos[1])
#                
#        #pocket中的两个接应点
#        left_attachment_point=[this_pos[0],min(pocket)]
#        right_attachment_point=[this_pos[0],max(pocket)]
#        
#        #将这些点添加至列表
#        for j in range(boundary[1],that_attachment_point[1],step_sign):
#            
##            print('plus',j)
#            that_points_to_draw.append([that_attachment_point[0],j])
#        
#        fitting_interval=FittingInterval(which_layer) 
        
                  
    #把它们都绘制出
    for this_point in points_to_draw:
        
        img_tag_temp[this_point[0],this_point[1]]=which_layer.tag
        
    #显示呗    
    if show:
        
        plt.imshow(Im.Tag2RGB(img_tag_temp,rgb_dict)) 
        
    #改变fraction的content
    which_layer.content=cp.deepcopy(points_to_draw)
    
    #更新which_fraction的一切?
    which_layer.UpdateAll()
    
    return which_layer
コード例 #7
0
def CurvedLinesLength(which_content, map_corner_points, lines_amount, img_rgb):

    #按索引排序
    map_corner_points = Dict.DictSortByIndex(
        map_corner_points, sorted(list(map_corner_points.keys())))

    #    print(map_corner_points)

    #计算出几个点的曲线距离
    #索引
    corner_index = list(map_corner_points.keys())

    #索引列表做一下
    curve_points = []

    for k in range(len(corner_index)):

        #第一段特殊处理
        if k == 0:

            curve_points.append(which_content[corner_index[-1]:] +
                                which_content[:corner_index[0] + 1])

        #其他正常
        else:

            curve_points.append(
                which_content[corner_index[k - 1]:corner_index[k] + 1])

#    print(curve_points)
    '''简单算法(用于检验)'''
    #    #所有的
    #    curve_distances=[]
    #
    #    #计算每一条曲线的曲线长度
    #    curve_distances=[ContinuousDistance(this_curve_points) for this_curve_points in curve_points]
    #
    #    print(curve_distances)
    '''拾取算法'''
    curve_points_up_and_down = []

    #获取两个点的坐标,确定两条层长线
    for temp_point in plt.ginput(lines_amount):

        #点击获取曲线中的点的坐标并转化一下
        point = [int(np.round(temp_point[1])), int(np.round(temp_point[0]))]

        #        print(point)

        #多条线到这个点的距离
        #以及用坐标集合当返回值
        map_distance_curve_points = {}

        #先求每条线的中点
        for this_curve_points in curve_points:

            #重心
            center = CalculateBaryCenter(this_curve_points)

            #收录进映射关系
            map_distance_curve_points[Distance(center,
                                               point)] = this_curve_points

        curve_points_up_and_down.append(map_distance_curve_points[min(
            list(map_distance_curve_points.keys()))])

    #上下两条边的点集合
    curve_points_up, curve_points_down = curve_points_up_and_down

    return curve_points_up, curve_points_down

    #上下两条边的长度
    curve_length_up = ContinuousDistance(curve_points_up)
    curve_length_down = ContinuousDistance(curve_points_down)

    #    print(curve_length_up)
    #    print(curve_length_down)

    Dis.Line2Red(curve_points_up + curve_points_down, img_rgb)

    return (curve_length_up + curve_length_down) / 2
コード例 #8
0
def InitDict(img_rgb, base_adjust=False, fault_exist=False):

    #临时变量
    rgb_list_temp = []

    for i in range(np.shape(img_rgb)[0]):

        for j in range(np.shape(img_rgb)[1]):

            if list(img_rgb[i, j].astype(int)) not in rgb_list_temp:

                rgb_list_temp.append(list(img_rgb[i, j].astype(int)))

    #判断背景色
    if [255, 255, 255] in rgb_list_temp:

        rgb_list_temp.remove([255, 255, 255])

    #只有layer的rgb
    layer_rgb_list = cp.deepcopy(rgb_list_temp)

    #    print(layer_rgb_list)

    #fault
    #有断层的情况哦
    if fault_exist:

        #各种颜色像素点数量的字典
        rgb_number_dict = {}

        for k in range(len(rgb_list_temp)):

            rgb_number_dict[k] = np.sum(img_rgb == rgb_list_temp[k])

        #比较像素点数量的多少
        key = list(rgb_number_dict.keys())
        value = list(rgb_number_dict.values())

        #得到断层的rgb值
        fault_rgb = rgb_list_temp[key[value.index(min(value))]]

        #        print(fault_rgb)

        #删除fault的rgb
        layer_rgb_list.remove(fault_rgb)

        #        print(layer_rgb_list)

        #生成rgb_dict,包括layer和fault
        rgb_dict = {}

        for i in range(len(layer_rgb_list)):

            rgb_dict[i + 1] = layer_rgb_list[i]

#    print(layer_rgb_list)

#但是列表不可以作为索引,因此先转化为临时tag列表
    tag_list = [index + 1 for index in range(len(layer_rgb_list))]

    #临时的tag_color索引
    rgb_dict_temp = dict(zip(tag_list, layer_rgb_list))

    #    print(rgb_dict_temp)

    #比较他们的深度度
    depth_list = []

    for this_rgb in list(rgb_dict_temp.values()):

        #        print(np.mean(list(np.where(img_rgb==list(this_rgb))[0])))

        depth_list.append(np.mean(list(
            np.where(img_rgb == list(this_rgb))[0])))

#    建立颜色何深度的索引
    map_tag_depth_temp = dict(zip(tag_list, depth_list))

    #    print(map_tag_depth_temp)

    #对depth进行排序
    depth_list.sort()

    #    print(depth_list)

    #老的tag要修改
    tag_list_temp = []

    #索引每一个深度值
    for this_depth in depth_list:

        tag_list_temp.append(
            Dict.DictKeyOfValue(map_tag_depth_temp, this_depth))

#    print(depth_list)
#    print(tag_list_temp)

#再按照它找rgb
    rgb_list = []

    for this_tag in tag_list_temp:

        rgb_list.append(rgb_dict_temp[this_tag])

    #最终结果
    rgb_dict = dict(zip(tag_list, rgb_list))

    if fault_exist:

        #索引-1代表断层fault
        rgb_dict[-1] = fault_rgb

    #重新排序
    rgb_dict = Dict.DictSortByIndex(rgb_dict, sorted(list(rgb_dict.keys())))

    #base
    #调整基底哦babe
    if base_adjust:

        base_tag = list(rgb_dict.keys())[-1]

        #        print(base_tag)

        base_rgb = rgb_dict[base_tag]

        #删除并重命名
        del rgb_dict[base_tag]

        #base_tag的索引定义为-2
        rgb_dict[-2] = base_rgb

    #blank
    if np.array([255, 255, 255]) in img_rgb:

        #0代表背景色
        rgb_dict[0] = [255, 255, 255]

    #排序
    rgb_dict = Dict.DictSortByIndex(rgb_dict, sorted(list(rgb_dict.keys())))

    #    print(rgb_dict)

    return rgb_dict
コード例 #9
0
def Find1stNeighbor(tag, flag_stop, edge, img_tag, index):

    #[i,j-1],[i+1,j-1],[i+1,j],[i+1,j+1],[i,j+1],[i-1,j+1],[i-1,j],[i-1,j-1]
    #邻域的索引和横纵坐标的索引(绝对索引)
    neighbordict = {
        0: (0, -1),
        1: (1, -1),
        2: (1, 0),
        3: (1, 1),
        4: (0, 1),
        5: (-1, 1),
        6: (-1, 0),
        7: (-1, -1)
    }

    #以最后一个edge点为指针进行检索
    first_pixel = pixel()
    first_pixel.ypos = edge[-1][0]
    first_pixel.xpos = edge[-1][1]

    #3 S[K]从上一个目标点是S[k-1]逆时针进行遍历
    #重新规划索引new_index后一个索引和前一个索引呈对角关系
    #若索引大于4,归化

    if index < 4:

        new_index = index + 4

    else:

        new_index = index - 4

    new_neighbordict = Dict.DictSortFromStart(neighbordict, new_index)

    #生成邻居列表,起始迭代邻居的索引
    first_pixel.GenerateNeighbor(img_tag)

    #邻域内邻居数量
    count = 0

    for i in range(len(new_neighbordict)):

        #获取目标点的索引,转化为绝对索引
        index = list(new_neighbordict.keys())[i]

        #符合tag的点计数
        if first_pixel.neighbor[index] == tag:

            count += 1

            #建立新的pixel对象
            temp_pixel = pixel()
            temp_pixel.ypos = first_pixel.ypos + new_neighbordict[index][0]
            temp_pixel.xpos = first_pixel.xpos + new_neighbordict[index][1]
            pos = [temp_pixel.ypos, temp_pixel.xpos]

            #判断目标点和起点是否相同,不能是第一个点
            if i > 0 and pos == edge[0]:

                flag_stop = True
                edge.append(pos)

                break

            #1 S[k-1]邻域内的第一个点已在边缘集合当中,则访问下一个点
            if pos not in edge:

                edge.append(pos)

                break

            #*2 S[k]邻域内只有一个边缘点,即上一个点S[k-1],则访问S[k-1]邻域内下一个点
            if len(edge) > 1 and pos == edge[-2] and count == 1 and i == 7:

                edge.append(pos)

                break

    return edge, index, flag_stop
コード例 #10
0
def EdgeIndex(which_fraction,
              derivative_format,
              index_plot=False,
              derivative_plot=False,
              pick_from_img=False,
              pick_from_plot=False):

    #建立which_fraction.edge坐标索引
    x = [k for k in range(len(which_fraction.edge) - 1)]
    content = [
        which_fraction.edge[k] for k in range(len(which_fraction.edge) - 1)
    ]

    map_x_content = dict(zip(x, content))

    #边界位置索引的序列
    index_A = []
    index_B = []

    #头尾一致
    for k in range(len(which_fraction.edge) - 1):

        pos_A = which_fraction.edge[k]
        pos_B = which_fraction.edge[k + 1]

        #生成邻居索引
        index_A.append(Geom.NeighborIndex(pos_A, pos_B)[0])
        index_B.append(Geom.NeighborIndex(pos_A, pos_B)[1])

    #轮转的影子索引列表
    another_index_A, map_original_another_x_A = Dict.SortFromStart(index_A, 10)
    another_index_B, map_original_another_x_B = Dict.SortFromStart(index_B, 10)

    #    print(len(index_A))
    #    print(len(index_B))
    #
    #    print(len(another_index_A))
    #    print(len(another_index_B))

    #    print(map_original_another_x_A)
    #    print(map_original_another_x_B)

    #梯度模式
    if derivative_format is 'gradient':

        #从index中找出梯度较大的点
        gradient_A = np.gradient(index_A)
        gradient_B = np.gradient(index_B)

        derivative_A = cp.deepcopy(np.array(gradient_A))
        derivative_B = cp.deepcopy(np.array(gradient_B))

        #another
        another_gradient_A = np.gradient(another_index_A)
        another_gradient_B = np.gradient(another_index_B)

        another_derivative_A = cp.deepcopy(np.array(another_gradient_A))
        another_derivative_B = cp.deepcopy(np.array(another_gradient_B))

    #差分格式
    if derivative_format is 'difference':

        #差分计算法
        difference_A = [
            index_A[k] - index_A[k + 1] for k in range(len(index_A) - 1)
        ]
        difference_B = [
            index_B[k] - index_B[k + 1] for k in range(len(index_B) - 1)
        ]

        derivative_A = cp.deepcopy(np.array(difference_A))
        derivative_B = cp.deepcopy(np.array(difference_B))

        #another
        another_difference_A = [
            another_index_A[k] - another_index_A[k + 1]
            for k in range(len(another_index_A) - 1)
        ]
        another_difference_B = [
            another_index_B[k] - another_index_B[k + 1]
            for k in range(len(another_index_B) - 1)
        ]

        another_derivative_A = cp.deepcopy(np.array(another_difference_A))
        another_derivative_B = cp.deepcopy(np.array(another_difference_B))

    #极值大小阈值
    threshold = 4
    '''使用轮转换位的方法计算角点,然后取并集'''
    #潜在可疑点
    points_x_A = list(np.where(abs(derivative_A) >= threshold)[0])
    points_x_B = list(np.where(abs(derivative_B) >= threshold)[0])

    #另一半
    another_points_x_A = list(
        np.where(abs(another_derivative_A) >= threshold)[0])
    another_points_x_B = list(
        np.where(abs(another_derivative_B) >= threshold)[0])

    #    print(points_x_A)
    #    print(points_x_B)

    #    print(another_points_x_A)
    #    print(another_points_x_B)
    '''有问题!!!'''
    """梯度的计算需要加以改进,多点平滑"""

    #消除红利
    for k in range(len(another_points_x_A)):

        another_points_x_A[k] = map_original_another_x_A[another_points_x_A[k]]

    for k in range(len(another_points_x_B)):

        another_points_x_B[k] = map_original_another_x_B[another_points_x_B[k]]


#    print(another_points_x_A)
#    print(another_points_x_B)

#可以点列表
    points_x_temp=points_x_A+another_points_x_A\
                 +points_x_B+another_points_x_B

    #最后取个并集
    points_x = []

    for item in list(set(points_x_temp)):

        if item == len(another_derivative_B) or item == len(
                another_derivative_A):

            points_x.append(0)
        else:
            points_x.append(item + 1)

    print(points_x)
    '''再处理一波'''

    #从img上获取点做实验
    if pick_from_img:

        #返回四个点
        points = PickPointsFromImg(4, which_fraction.edge)

        #横坐标哦
        that_x = [content.index(this_point) for this_point in points]

    #显示吗哥
    if index_plot:

        plt.figure()

        if pick_from_img:

            #纵坐标哦
            index_A_y = [index_A[this_x] for this_x in that_x]
            index_B_y = [index_B[this_x] for this_x in that_x]

            #逐个输出可疑点
            for k in range(len(that_x)):

                plt.subplot(211), plt.plot(that_x[k],
                                           index_A_y[k],
                                           marker='o',
                                           color='red')
                plt.subplot(212), plt.plot(that_x[k],
                                           index_B_y[k],
                                           marker='o',
                                           color='red')

        #绘制整体曲线
        plt.subplot(211), plt.plot(index_A)
        plt.subplot(212), plt.plot(index_B)

        #看看梯度8
        if derivative_plot:

            #逐个输出可疑点
            for this_x in points_x:

                plt.subplot(211), plt.plot(this_x,
                                           index_A[this_x],
                                           marker='o',
                                           color='red')
                plt.subplot(212), plt.plot(this_x,
                                           index_B[this_x],
                                           marker='o',
                                           color='red')

            plt.figure()

            #从img上获取点做实验
            if pick_from_img:

                #纵坐标哦
                derivative_A_y = [derivative_A[this_x] for this_x in that_x]
                derivative_B_y = [derivative_B[this_x] for this_x in that_x]

                #逐个输出
                for k in range(len(that_x)):

                    plt.subplot(211), plt.plot(that_x[k],
                                               derivative_A_y[k],
                                               marker='o',
                                               color='red')
                    plt.subplot(212), plt.plot(that_x[k],
                                               derivative_B_y[k],
                                               marker='o',
                                               color='red')

            #整体曲线
            plt.subplot(211), plt.plot(derivative_A)
            plt.subplot(212), plt.plot(derivative_B)

            #逐个输出可疑点
            for this_x in points_x:

                plt.subplot(211), plt.plot(this_x,
                                           derivative_A[this_x],
                                           marker='o',
                                           color='red')
                plt.subplot(212), plt.plot(this_x,
                                           derivative_B[this_x],
                                           marker='o',
                                           color='red')

            return [content[this_x] for this_x in points_x]

        if pick_from_plot:

            return PickPointsFromPlot(4, map_x_content)
コード例 #11
0
def GetExtremePoints(which_content, mode='big', show=False):

    #    print('GetExtremePoints')

    #所有函数值
    #    values=ReOrder(which_content)
    values = cp.deepcopy(which_content)

    #边缘两个取隔壁和自己的差,中间取隔壁俩的差
    gradients = np.gradient(values)

    #建立梯度和值的映射关系
    map_values_gradients = dict(zip(values, gradients))

    #得到极值的索引
    index_extreme_points = []

    #values用于显示的点
    values_X_Y_to_plot = []

    #gradients用于显示的点
    gradients_X_Y_to_plot = []

    #求得的极值列表
    extreme_values = []

    #    print(gradients)
    #    print(map_values_gradients)

    #寻找0极值,去掉首元素
    for k in range(1, len(values)):

        #        print(gradients[k-1],gradients[k])

        #极大值
        if mode == 'big':

            #左右两边一大一小
            if gradients[k - 1] > 0 > gradients[k]:

                that_value_left = Dict.DictKeyOfValue(map_values_gradients,
                                                      gradients[k - 1])
                that_value_right = Dict.DictKeyOfValue(map_values_gradients,
                                                       gradients[k])

                that_value = max(that_value_left, that_value_right)

            else:

                continue

        #极小值
        if mode == 'small':

            #左右两边一大一小
            if gradients[k - 1] < 0 < gradients[k]:

                that_value_left = Dict.DictKeyOfValue(map_values_gradients,
                                                      gradients[k - 1])
                that_value_right = Dict.DictKeyOfValue(map_values_gradients,
                                                       gradients[k])

                that_value = min(that_value_left, that_value_right)

            else:

                continue

#        #所有极值
#        if mode=='both':
#
#            #左右两边一大一小
#            if gradients[k-1]>0>gradients[k] or gradients[k-1]<0<gradients[k]:
#
#                that_value_left=Dict.DictKeyOfValue(map_values_gradients,gradients[k-1])
#                that_value_right=Dict.DictKeyOfValue(map_values_gradients,gradients[k])
#
#                that_value=max(that_value_left,that_value_right)

#        print(that_value_left,that_value_right)

#极值列表上车
        extreme_values.append(that_value)

        #该极值索引
        that_index = list(values).index(that_value)

        index_extreme_points.append(that_index)

        #描绘的点上车吧
        values_X_Y_to_plot.append([that_index, values[that_index]])

        gradients_X_Y_to_plot.append([that_index, gradients[that_index]])


#    print(extreme_values)

#    print(distances_X_Y_to_plot)
#    print(gradients_X_Y_to_plot)

#显示吗
    if show:

        #        print('show')

        #绘制值曲线
        plt.figure()

        plt.subplot(211)
        plt.plot(values, color='black', linestyle='-')

        for this_X_Y in values_X_Y_to_plot:

            plt.scatter(this_X_Y[0], this_X_Y[1], color='red')

        #绘制梯度曲线
        plt.subplot(212)
        plt.plot(gradients, color='black', linestyle='--')

        for this_X_Y in gradients_X_Y_to_plot:

            plt.scatter(this_X_Y[0], this_X_Y[1], color='red')

    return extreme_values
コード例 #12
0
def Cohere(Chips):

    #根据中点来判断
    J_center_Chips = [this_Chip.center[1] for this_Chip in Chips]

    #建立Chip和J值的索引关系
    map_J_center_Chips = dict(zip(Chips, J_center_Chips))

    #min在左
    Chip_left = Dict.DictKeyOfValue(map_J_center_Chips,
                                    min(list(map_J_center_Chips.values())))

    #max在右
    Chip_right = Dict.DictKeyOfValue(map_J_center_Chips,
                                     max(list(map_J_center_Chips.values())))

    #    print(Chip_left.center)
    #    print(Chip_right.center)

    #取Chip_left中最右的
    chips_left = chipsOf(Chip_left, 'right')

    #取Chip_right中最左的
    chips_right = chipsOf(Chip_right, 'left')

    #    print(chips_right,chips_left)

    #根据其坐标进行移动
    #    print(chips_right.center)
    #    print(chips_left.center)
    #
    #    print(chips_right.content)
    #    print(chips_left.content)

    I_offset = SpecialPointOf(chips_right, 'left')[0] - SpecialPointOf(
        chips_left, 'right')[0]
    J_offset = SpecialPointOf(chips_right, 'left')[1] - SpecialPointOf(
        chips_left, 'right')[1]

    #    print(I_offset,J_offset)

    #左右盘的位移
    I_offset_left = int(np.floor(I_offset / 2))
    J_offset_left = int(np.floor(J_offset / 2))

    #右边的偏移距
    I_offset_right = abs(abs(abs(I_offset) - abs(I_offset_left)))
    J_offset_right = abs(abs(abs(J_offset) - abs(J_offset_left)))

    #判断是否为0
    #乘上算子
    if I_offset_left != 0:

        I_offset_right *= (-I_offset_left / abs(I_offset_left))

    if J_offset_left != 0:

        J_offset_right *= (-J_offset_left / abs(J_offset_left))

#    print(I_offset_left,J_offset_left)
#    print(I_offset_right,J_offset_right)

#    print(Chip_left.center)
#    print(Chip_right.center)

#移动Chip_left,Chip_right
    Chip_left.Move(I_offset_left, J_offset_left)
    Chip_right.Move(I_offset_right, J_offset_right)

    #    print(Chip_left.center)
    #    print(Chip_right.center)

    return [Chip_left, Chip_right]