def test_create_results_table_raises_error_if_number_params_different( self): parameters = OrderedDict([('Height', (100, 0.1)), ('Cost function value', (1.5, 0))]) fits_func1 = create_test_fits(('ws1',), 'func1', parameters) parameters = OrderedDict([('Height', (100, 0.1)), ('A0', (1, 0.001)), ('Cost function value', (1.5, 0))]) fits_func2 = create_test_fits(('ws2',), 'func2', parameters) fitting_context = TFAsymmetryFittingContext() fitting_context.fit_list = fits_func1 + fits_func2 model = ResultsTabModel(fitting_context, ResultsContext()) selected_results = [('ws1', 0), ('ws2', 1)] self.assertRaises(IndexError, model.create_results_table, [], selected_results)
def test_create_results_table_with_mixed_global_non_global_raises_error( self): parameters = OrderedDict([('f0.Height', (100, 0.1)), ('f1.Height', (90, 0.001)), ('Cost function value', (1.5, 0))]) fits_func1 = create_test_fits(('ws1',), 'func1', parameters) fits_globals = create_test_fits(('ws2',), 'func1', parameters, global_parameters=['Height']) fitting_context = TFAsymmetryFittingContext() fitting_context.fit_list = fits_func1 + fits_globals model = ResultsTabModel(fitting_context, ResultsContext()) selected_results = [('ws1', 0), ('ws2', 1)] self.assertRaises(IndexError, model.create_results_table, [], selected_results)
def test_create_results_table_with_logs_missing_from_some_workspaces_raises(self): workspace = WorkspaceFactory.create("Workspace2D", NVectors=3, YLength=5, XLength=5) parameters = OrderedDict([('f0.Height', (100, 0.1))]) logs = [('log1', (1., 2.)), ('log2', (3., 4.)), ('log3', (4., 5.)), ('log4', (5., 6.))] fits_logs1 = create_test_fits(('ws1',), 'func1', parameters, output_workspace_names=[StaticWorkspaceWrapper('test-ws1-ws', workspace)]) add_logs(fits_logs1[0].input_workspaces[0], logs[:2]) fits_logs2 = create_test_fits(('ws2',), 'func1', parameters, output_workspace_names=[StaticWorkspaceWrapper('test-ws2-ws', workspace)]) add_logs(fits_logs2[0].input_workspaces[0], logs[2:]) fitting_context = TFAsymmetryFittingContext() fitting_context.fit_list = fits_logs1 + fits_logs2 model = ResultsTabModel(fitting_context, ResultsContext()) selected_results = [('ws1', 0), ('ws2', 1)] selected_logs = ['log1', 'log3'] self.assertRaises(IndexError, model.create_results_table, selected_logs, selected_results)