raise ValueError("x and y signals must have same size") except ValueError, err_msg: raise ValueError(err_msg) return ' Initialize default values if not given ' if self._tau_max == 0: self._tau_max = lx / 10 if self._window == 0: self._window = lx / 10 ' Initialize lag array' lag_array = np.arange(-self._tau_max, self._tau_max + 1, self._tau_inc) ' Initialize Mutual information instance once ' mi = MutualInformation(self._n_neighbours, self._type, self._var_resc, self._noise) ' Initialize results ' window_MI = {} i = self._tau_max while i <= lx - self._window: curr_coef_lag = [] for k in lag_array: if k <= 0: # For negative tau curr_x = x[i:i + self._window].values curr_y = y[i + k:i + k + self._window].values else: # For positive tau curr_x = x[i - k:i - k + self._window].values curr_y = y[i:i + self._window].values
raise ValueError("x and y signals must have same size") except ValueError, err_msg: raise ValueError(err_msg) return ' Initialize default values if not given ' if self._tau_max == 0 : self._tau_max = lx / 10 if self._window == 0 : self._window = lx / 10 ' Initialize lag array' lag_array = np.arange(-self._tau_max, self._tau_max +1, self._tau_inc) ' Initialize Mutual information instance once ' mi = MutualInformation(self._n_neighbours, self._type, self._var_resc, self._noise) ' Initialize results ' window_MI = {} i = self._tau_max while i <= lx - self._window : curr_coef_lag = [] for k in lag_array : if k <= 0 : # For negative tau curr_x = x[i : i + self._window].values curr_y = y[i + k : i + k + self._window].values else : # For positive tau curr_x = x[i - k : i - k + self._window].values curr_y = y[i : i + self._window].values
raise ValueError("x and y signals must have same size") except ValueError, err_msg: raise ValueError(err_msg) return ' Initialize default values if not given ' if self._tau_max == 0 : self._tau_max = lx / 10 if self._window == 0 : self._window = lx / 10 ' Initialize lag array' lag_array = np.arange(-self._tau_max, self._tau_max +1, self._tau_inc) ' Initialize Mutual information instance once ' mi = MutualInformation(self._n_neighbours, self._type, self._var_resc, self._noise) ' Initialize results ' window_MI = {} i = self._tau_max while i <= lx - self._window: curr_coef_lag = [] fixed_x = pd.DataFrame(x[i: i + self._window].values) fixed_y = pd.DataFrame(y[i: i + self._window].values) # For negative tau for k in lag_array[lag_array <= 0]: curr_y = y[i + k: i + k + self._window].values