def dynamic_init(self): """ Initializes all parts of NEAT that are dependent upon the client. """ self.init_db() # Class containing huge configuration object. # Loads config from JSON or uses default config. self.config = NEATConfig(self._session["config_path"]) # selecting can mean: # - selecting a single genome for mutation # - selecting two genomes for breeding # - selecting two clusters for combination # - selecting two genomes from two given clusters for inter cluster # breeding (since we don't really want to create ALL combinations) self.selector = GenomeSelector( self.genome_repository, self.cluster_repository, self.config.parameters["selection"] ) # makes decisions lol # things like what to do and stuff (breeding or mutation, if clustering # is necessary etc) self.decision_maker = DecisionMaker( self.config.parameters["decision_making"] ) # breeder creates a new genome from two given genomes # it needs the gene_repository to register new genes and to look up used # ones self.breeder = Breeder( self.config.parameters["breeding"] ) # Mutator creates a new genome from a given genome # it needs the gene_repository to register new genes and to look up used # ones self.mutator = Mutator( self.gene_repository, self.config.parameters["mutating"] ) # Analyst analyzes a given genome and creates an AnalysisResult based on # it self.analyst = GenomeAnalyst() # clusterer divides all existing and active genomes in clusters aka spe- # cies self.clusterer = GenomeClusterer( self.genome_repository, self.cluster_repository, self.config.parameters["clustering"] ) self.simulator = Simulator(self.gene_repository)
class MainDirector(Director): def __init__(self, **kwargs): """ :param kwargs: - mode: - exit: exits the program, default action if nothing is provided. - new: creates a new database for a given simulation. requires parame- ter simulation to be set. - load: loads a database for a given simulation. requires parameter simulation to be set. - simulation: the name of the simulation that should be used. must cor- respond to a module name in Simulation. :return: """ self._maximum_timeouts = 5000 self.mode = kwargs.get('mode', 'exit') self.selector = None # type: GenomeSelector self.decision_maker = None # type: DecisionMaker self.breeder = None # type: Breeder self.mutator = None # type: Mutator self.analyst = None # type: GenomeAnalyst self.clusterer = None # type: GenomeClusterer self.simulator = None # type: Simulator self.simulation_connector = SimulationConnector() # type: SimulationConnector self.database_connector = None # type: DatabaseConnector self.gene_repository = None # type: GeneRepository self.genome_repository = None # type: GenomeRepository self.cluster_repository = None # type: ClusterRepository self.config = None # type: NEATConfig self._session = None # type: dict self._discarded_genomes_count = 0 # type: int if self.mode == 'exit': exit() elif self.mode == 'run_server': startup_check = StartupCheck() startup_check.run() while True: try: self.idle() # TODO: exit command except NetworkProtocolException as e: print(e) pass def idle(self): """ Standard method that will be executed if local startup is done. In this state, the Director will wait for the client. """ self._session = self.simulation_connector.get_session() # Session tokens will identify a client. # They can be useful for later parallelization. # They also identify the database collections which will be used, # so that different users can have their own storage and previous # sessions can be loaded from storage. self.dynamic_init() # This can be called after the client has connected if debug: self.database_connector.clear_collection("genomes") self.database_connector.clear_collection("clusters") self.database_connector.clear_collection("genes") # In case of simulation run: self.run() def dynamic_init(self): """ Initializes all parts of NEAT that are dependent upon the client. """ self.init_db() # Class containing huge configuration object. # Loads config from JSON or uses default config. self.config = NEATConfig(self._session["config_path"]) # selecting can mean: # - selecting a single genome for mutation # - selecting two genomes for breeding # - selecting two clusters for combination # - selecting two genomes from two given clusters for inter cluster # breeding (since we don't really want to create ALL combinations) self.selector = GenomeSelector( self.genome_repository, self.cluster_repository, self.config.parameters["selection"] ) # makes decisions lol # things like what to do and stuff (breeding or mutation, if clustering # is necessary etc) self.decision_maker = DecisionMaker( self.config.parameters["decision_making"] ) # breeder creates a new genome from two given genomes # it needs the gene_repository to register new genes and to look up used # ones self.breeder = Breeder( self.config.parameters["breeding"] ) # Mutator creates a new genome from a given genome # it needs the gene_repository to register new genes and to look up used # ones self.mutator = Mutator( self.gene_repository, self.config.parameters["mutating"] ) # Analyst analyzes a given genome and creates an AnalysisResult based on # it self.analyst = GenomeAnalyst() # clusterer divides all existing and active genomes in clusters aka spe- # cies self.clusterer = GenomeClusterer( self.genome_repository, self.cluster_repository, self.config.parameters["clustering"] ) self.simulator = Simulator(self.gene_repository) def init_db(self): # database connection is a connection to an arbitrary database that is # used to store genes, genomes and nodes self.database_connector = DatabaseConnector( self._session["session_id"] ) # gene_repository administrates all genes ever created self.gene_repository = GeneRepository( self.database_connector ) # genome_repository administrates all genomes ever created self.genome_repository = GenomeRepository( self.database_connector ) # cluster_repository administrates all clusters ever created self.cluster_repository = ClusterRepository( self.database_connector ) def run(self): """ The main function where the simulation is run, new genomes are created and discarded This is where the evolutionary magic happens. """ # on new, creates random set of genomes based on configuration inside # Simulation.given_simulation.config self.decision_maker.reset_time() # Init population if its not present yet. if len( list(self.genome_repository.get_current_population()) ) < self.config.parameters["clustering"]["max_population"]: self.init_population() while True: # 1. Simulation / wait for client timeout_count = 0 advance_generation = None while (timeout_count < self._maximum_timeouts) and \ advance_generation is None: try: advance_generation = self.perform_simulation_io() except NetworkTimeoutException: # TODO: log timeout event timeout_count += 1 if not timeout_count < self._maximum_timeouts: raise NetworkTimeoutException # Either: # * go on with loop, generate next generation # * save database for later use, hand out session id to client if not advance_generation: print("Exiting...") exit() # TODO: archive session / signal worker threads # 2. Calculate offspring values self.calculate_cluster_offspring() # 3. Discarding / Regeneration if self.decision_maker.inter_cluster_breeding_time: # if it's time to cross-breed, first discard a few clusters self.discard_clusters() # then combine clusters self.crossbreed_clusters() else: # if it's incest time, first discard a few genomes self.discard_genomes() # then refill the population self.generate_new_genomes() # 4. Advance time self.decision_maker.advance_time() def generate_new_genomes(self): """ Regenerates the population by selecting genomes for mutation / breeding, running the generation process and performing analysis. :return: """ mutation_percentage = self.decision_maker.mutation_percentage genomes_for_mutation = self.selector.select_genomes_for_mutation(mutation_percentage) genomes_for_breeding = self.selector.select_genomes_for_breeding(1 - mutation_percentage) new_genomes = [] for genome in genomes_for_mutation: new_genome = self.mutator.mutate_genome(genome) new_genomes.append(new_genome) for genome_one, genome_two in genomes_for_breeding: new_genome = self.breeder.breed_genomes( genome_one, genome_two ) new_genomes.append(new_genome) for genome in new_genomes: self.analyze_and_insert(genome) def crossbreed_clusters(self): """ combines two clusters by breeding genomes of both clusters :return: """ cluster_one, cluster_two = self.selector.select_clusters_for_combination() for genome_one, genome_two in self.selector.select_cluster_combinations( cluster_one, cluster_two, self._discarded_genomes_count ): new_genome = self.breeder.breed_genomes(genome_one, genome_two) self.analyze_and_insert(new_genome) self._discarded_genomes_count = 0 def analyze_and_insert(self, genome: StorageGenome): analysis_genome = AnalysisGenome(self.gene_repository, genome) analysis_result = self.analyst.analyze(analysis_genome) genome.analysis_result = analysis_result self.genome_repository.insert_genome(genome) self.clusterer.cluster_genome(genome) def calculate_cluster_offspring(self): """ Calculates fitness values and offspring for clusters. :return: """ self.clusterer.calculate_cluster_offspring_values() def discard_genomes(self): """ discards a number of genomes :return: """ for genome in self.selector.select_genomes_for_discarding(): self.genome_repository.disable_genome(genome.genome_id) def discard_clusters(self): """ Discards a number of clusters :return: """ for cluster in self.selector.select_clusters_for_discarding(): genomes_to_discard = self.genome_repository.get_genomes_in_cluster(cluster.cluster_id) self._discarded_genomes_count += len(list(genomes_to_discard)) self.genome_repository.disable_genomes([i.genome_id for i in genomes_to_discard]) def perform_simulation_io(self): genomes = list(self.genome_repository.get_current_population()) block_count = math.ceil(len(genomes) / self._session["block_size"]) genome_index = 0 fitness_values = {} for block_id in range(block_count): block = genomes[genome_index: genome_index + self._session["block_size"]] self.simulation_connector.send_block(block, block_id) block_inputs = self.simulation_connector.get_block_inputs(block_id) self.simulation_connector.send_block_outputs( self.compute_genome_outputs(block_inputs), block_id ) fitness_values = { **fitness_values, **self.simulation_connector.get_fitness_values(block_id) } genome_index += self._session["block_size"] self.update_fitness_values( fitness_values ) return self.simulation_connector.get_advance_generation() def compute_genome_outputs( self, block_inputs: Dict[ObjectId, Dict[str, float]] ) -> Dict[ObjectId, Dict[str, float]]: results = dict({}) for genome_id, inputs in block_inputs.items(): storage_genome = self.genome_repository.get_genome_by_id(genome_id) outputs = self.simulator.simulate_genome(storage_genome, inputs) results[genome_id] = outputs return results def update_fitness_values( self, fitness_values: Dict[ObjectId, float] ) -> None: for genome_id, fitness_value in fitness_values.items(): self.genome_repository.update_genome_fitness( genome_id, fitness_value ) def init_population(self): population_size = self.config.parameters["clustering"]["max_population"] input_labels = self.config.parameters["genomes"]["inputs"] output_labels = self.config.parameters["genomes"]["outputs"] for i in range(population_size): genome = StorageGenome( inputs=input_labels, outputs=output_labels ) self.analyze_and_insert(genome)