if status == 'train': print('Model saved to: ', save_model_dir) sys.stdout.flush() if status == 'train': emb = args.wordemb.lower() print('Word Embedding: ', emb) if emb == 'glove': emb_file = '../data/embedding/glove.6B.100d.txt' else: emb_file = None char_emb_file = args.charemb.lower() print('Char Embedding: ', char_emb_file) name = 'MetaRNN' # catnlp config = Config() config.lr = 0.0015 config.number_normalized = True data_initialization(config, train_file, dev_file, test_file) config.gpu = gpu config.word_features = name print('Word features: ', config.word_features) config.generate_instance(train_file, 'train') config.generate_instance(dev_file, 'dev') config.generate_instance(test_file, 'test') if emb_file: print('load word emb file...norm: ', config.norm_word_emb) config.build_word_pretain_emb(emb_file) if char_emb_file != 'none': print('load char emb file...norm: ', config.norm_char_emb) config.build_char_pretrain_emb(char_emb_file)
if status == 'train': print('Model saved to: ', save_model_dir) sys.stdout.flush() if status == 'train': emb = args.wordemb.lower() print('Word Embedding: ', emb) if emb == 'glove': emb_file = '../../../../data/embedding/glove.6B.100d.txt' else: emb_file = None char_emb_file = args.charemb.lower() print('Char Embedding: ', char_emb_file) name = 'BaseLSTM' # catnlp config = Config() config.layers = 2 config.optim = 'Adam' config.char_features = 'CNN' config.lr = 0.015 config.hidden_dim = 200 config.bid_flag = True config.number_normalized = True data_initialization(config, train_file, dev_file, test_file) config.gpu = gpu config.word_features = name print('Word features: ', config.word_features) config.generate_instance(train_file, 'train') config.generate_instance(dev_file, 'dev') config.generate_instance(test_file, 'test') if emb_file:
if status == 'train': print('Model saved to: ', save_model_dir) sys.stdout.flush() if status == 'train': emb = args.wordemb.lower() print('Word Embedding: ', emb) if emb == 'glove': emb_file = 'data/embedding/glove.6B.100d.txt' else: emb_file = None char_emb_file = args.charemb.lower() print('Char Embedding: ', char_emb_file) name = 'BaseLSTM' # catnlp config = Config() config.optim = 'SGD' config.lr = 0.015 config.iteration = 200 config.hidden_dim = 200 # config.clip = True config.number_normalized = True config.gpu = gpu config.word_features = name print('Word features: ', config.word_features) count = 0 with open(args.dataset, 'r') as f: for line in f: print(line) count += 1 line = line.strip()