コード例 #1
0
class DoubleQ(Agent):
    def __init__(self, params, name, task, load_path=None):
        super(DoubleQ, self).__init__(params, name, task)
        self.dual = self.vPars['dual']
        if self.trainMode:
            if self.dual:
                self.tarNet = DualNetwork(self.vPars, self.vTrain)
                self.valueNet = DualNetwork(self.vPars, self.vTrain)
            else:
                self.tarNet = Network(self.vPars, self.vTrain)
                self.valueNet = Network(self.vPars, self.vTrain)
                for target_param, param in zip(self.tarNet.parameters(),
                                               self.valueNet.parameters()):
                    target_param.data.copy_(param.data)
        else:
            self.valueNet = Network(self.vPars, self.vTrain)
            paths = [
                '/home/austinnguyen517/Documents/Research/BML/MultiRobot/AN_Bridging/push_in_hole.txt',
                '/home/austinnguyen517/Documents/Research/BML/MultiRobot/AN_Bridging/push_in_hole2.txt'
            ]
            if not load_path:
                self.valueNet = []
                for path in paths:
                    self.valueNet.append(Network(self.vPars, self.vTrain))
                    self.valueNet[-1].load_state_dict(torch.load(path))
            else:
                self.valueNet.load_state_dict(torch.load(load_path))
        self.out_n = self.vPars['neurons'][-1]
        self.replaceCounter = 0
        self.valueLoss = []
        self.avgLoss = 0
        self.expSize = self.vTrain['buffer']
        self.exp = Memory(size=self.expSize)
        self.double = self.vTrain['double']

        task.initAgent(self)

        if not load_path:
            while (not self.stop):
                x = 1 + 1
            task.postTraining()

    def saveModel(self):
        torch.save(
            self.valueNet.state_dict(),
            '/home/austinnguyen517/Documents/Research/BML/MultiRobot/AN_Bridging/box_push_hierarchical_q_policy.txt'
        )
        pass

    def store(self, s, a, r, sprime, aprime, done):
        self.exp.push(s, a, r, 1 - done, aprime, sprime)

    def get_action(self, s):
        i = np.random.random()
        if i < self.explore and self.trainMode:
            index = np.random.randint(self.out_n)
        else:
            if type(self.valueNet) == list:
                model_index = np.random.randint(len(self.valueNet))
                net = self.valueNet[model_index]
            else:
                net = self.valueNet
            q = net(torch.FloatTensor(s))
            #print(q)
            q = q.detach()
            index = np.argmax(q.numpy())
        self.explore = max(.1, self.explore * .9997)
        return index

    def train(self):
        if len(self.exp) >= 500:
            states, actions, rewards, masks, _, nextStates, _, _, _ = self.exp.sample(
                batch=self.batch_size)

            if self.replaceCounter % 500 == 0:  # THIS IS SET TO 200 FOR BOX PUSH TASK...SLOPE IS 500
                self.tarNet.load_state_dict(self.valueNet.state_dict())
                self.replaceCounter = 0

            qValues = self.valueNet(torch.FloatTensor(states).squeeze(
                1))  #pass in. Processing implied
            q = torch.gather(qValues, 1,
                             torch.LongTensor(actions).unsqueeze(
                                 1))  #get q values of actions
            qnext = self.tarNet(torch.FloatTensor(nextStates))
            qnext = qnext.squeeze(1).detach()  #pass in

            if self.double:
                qNextDouble = self.valueNet(torch.FloatTensor(nextStates))
                qNextDouble = qNextDouble.squeeze(1).detach()  #pass in
                qnext = torch.gather(
                    qnext, 1,
                    torch.LongTensor(qNextDouble.argmax(1).unsqueeze(1)))
                qtar = torch.FloatTensor(rewards).squeeze(
                    1
                ) + self.discount * torch.Tensor(masks).unsqueeze(1) * qnext
            else:
                qtar = torch.FloatTensor(
                    rewards) + self.discount * torch.Tensor(
                        masks).unsqueeze(1) * qnext.max(1)[0].view(
                            self.batch_size, 1)  #calculate target

            val_loss = self.valueNet.get_loss(q, qtar)
            self.valueNet.optimizer.zero_grad()
            val_loss.backward()
            self.valueNet.optimizer.step()

            self.replaceCounter += 1
            self.totalSteps += 1
コード例 #2
0
class DoubleQ(Agent):
    def __init__(self, params, name, task, load_path=None):
        super(DoubleQ, self).__init__(params, name, task)
        self.dual = self.vPars['dual']
        if self.trainMode:
            if self.dual:
                self.tarNet = DualNetwork(self.vPars, self.vTrain)
                self.valueNet = DualNetwork(self.vPars, self.vTrain)
            else:
                self.tarNet = Network(self.vPars, self.vTrain)
                self.valueNet = Network(self.vPars, self.vTrain)
                for target_param, param in zip(self.tarNet.parameters(), self.valueNet.parameters()):
                    target_param.data.copy_(param.data)
        else:
            self.valueNet = Network(self.vPars, self.vTrain)
            paths = ['/home/austinnguyen517/Documents/Research/BML/MultiRobot/AN_Bridging/model_training_data/hierarchical_q_policy2.txt']
            if not load_path:
                self.valueNet = []
                for path in paths:
                    self.valueNet.append(Network(self.vPars, self.vTrain))
                    self.valueNet[-1].load_state_dict(torch.load(path))
            else:
                self.valueNet.load_state_dict(torch.load(load_path))
        self.out_n = self.vPars['neurons'][-1]
        self.replaceCounter = 0
        self.valueLoss = []
        self.avgLoss = 0
        self.expSize =self.vTrain['buffer']
        self.exp = Memory(size = self.expSize)

        self.priority = self.vTrain['priority']
        self.priorities = []
        self.beta = .5
        self.alpha = .7

        self.double = self.vTrain['double']
        if 'noise' in self.vTrain:
            self.noise = self.vTrain['noise']
        else:
            self.noise = 0
        

        task.initAgent(self)
    
        if not load_path:
            while(not self.stop):
                x = 1+1
            task.postTraining()

    def saveModel(self):
        torch.save(self.valueNet.state_dict(), '/home/austinnguyen517/Documents/Research/BML/MultiRobot/AN_Bridging/model_training_data/hierarchical_q_policy2.txt')
        pass
    
    def store(self, s, a, r, sprime, aprime, done):
        self.exp.push(s, a, r, 1-done, aprime, sprime)
        if len(self.priorities) < self.expSize:
            self.priorities.append(1)
        else:
            self.priorities = self.priorities[1:]
            self.priorities.append(1)
    
    def get_q(self, s):
        if type(self.valueNet) == list:
            model_index = np.random.randint(len(self.valueNet))
            net = self.valueNet[model_index]
        else:
            net = self.valueNet
        q = net(torch.FloatTensor(s))
        q = q.detach()
        return q
    
    def get_action(self, s, testing_time=False, probabilistic=False):
        i = np.random.random()
        if i < self.explore and self.trainMode and not testing_time:
            index = np.random.randint(self.out_n)
        else:
            q = self.get_q(s)
            print(q)
            if probabilistic:
                q = q.numpy()
                probs = np.exp(q)
                probs = probs / np.sum(probs)
                index = np.random.choice(q.size, p=probs.ravel())
            else:
                index = np.argmax(q.numpy())  
        self.explore = max(0, self.explore * .9997)
        return index
    
    def get_q_and_q_tar(self, states, actions, nextStates, rewards, masks):
        qValues = self.valueNet(torch.FloatTensor(states).squeeze(1)) #pass in. Processing implied
        q = torch.gather(qValues, 1, torch.LongTensor(actions).unsqueeze(1)) #get q values of actions  
        qnext  = self.tarNet(torch.FloatTensor(nextStates))
        qnext = qnext.squeeze(1).detach() #pass in

        if self.double: 
            qNextDouble = self.valueNet(torch.FloatTensor(nextStates))
            qNextDouble = qNextDouble.squeeze(1).detach() #pass in
            qnext = torch.gather(qnext, 1, torch.LongTensor(qNextDouble.argmax(1).unsqueeze(1)))
            qtar = torch.FloatTensor(rewards).squeeze(1) + self.discount * torch.Tensor(masks).unsqueeze(1) * qnext
        else:
            qtar = torch.FloatTensor(rewards) + self.discount * torch.Tensor(masks).unsqueeze(1) * qnext.max(1)[0].view(self.batch_size, 1) #calculate target
        return q, qtar

    def train(self, override=False):
        if len(self.exp) >= 500 or override:
            if self.priority:
                loss = 0
                weights = []
                errors = []
                assert len(self.priorities) == len(self.exp)
                for i in range(self.batch_size):
                    probs = np.array([math.pow(p, self.alpha) for p in self.priorities])
                    probs = probs / np.sum(probs)
                    choice = np.random.choice(len(self.priorities), p=probs, size=1)
                    weights.append(math.pow(len(self.priorities) * self.priorities[int(np.asscalar(choice))], -self.beta))
                    states, actions, rewards, masks, _, nextStates, _, _,_ = self.exp.get_transitions(choice)
                    q, qtar = self.get_q_and_q_tar(states, actions, nextStates, rewards, masks)
                    td = qtar - q
                    self.priorities[int(np.asscalar(choice))] = abs(td[:, 0])
                    errors.append(self.valueNet.get_loss(q, qtar))
                max_weight = max(weights)
                weights = [w/max_weight for w in weights]
                val_loss = sum([w * e for w,e in zip(weights, errors)])
                    
            else:
                states, actions, rewards, masks, _ , nextStates, _,_,_ = self.exp.sample(batch = self.batch_size)

                if self.replaceCounter % 200 == 0:
                    self.tarNet.load_state_dict(self.valueNet.state_dict())
                    self.replaceCounter = 0

                if self.noise:
                    states = np.array(states)
                    states = states + np.random.normal(0, self.noise, states.shape)

                q, qtar = self.get_q_and_q_tar(states, actions, nextStates, rewards, masks)
                val_loss = self.valueNet.get_loss(q, qtar)

            self.valueNet.optimizer.zero_grad()
            val_loss.backward()
            self.valueNet.optimizer.step()

            self.replaceCounter += 1
            self.totalSteps += 1
            return val_loss