コード例 #1
0
# e.g. number 3 will become [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
y_train = np_utils.to_categorical(y_train)

# same for test data : 10000 samples
x_test = x_test.reshape(x_test.shape[0], 1, 28 * 28)
x_test = x_test.astype('float32')
x_test /= 255
y_test = np_utils.to_categorical(y_test)
# to_categorical (what it does):
# https://www.geeksforgeeks.org/python-keras-keras-utils-to_categorical/
# it is used to put the actual y value in the same format as the predicted y
# value

# Network
net = NeuralNet()
net.add(FCLayer(28 * 28, 100))  # input_shape=(1, 28*28)    ;
# output_shape=(1, 100)
net.add(ActivationLayer(tanh, tanh_prime))
net.add(FCLayer(100, 50))  # input_shape=(1, 100)      ;
net.add(ActivationLayer(tanh, tanh_prime))
net.add(FCLayer(50, 10))  # input_shape=(1, 50)       ;
# output_shape=(1, 10)
net.add(ActivationLayer(tanh, tanh_prime))

# train on 1000 samples
# as we didn't implemented mini-batch GD, training will be pretty slow if we
# update at each iteration on 60000 samples...

net.use(mse, mse_prime)
net.fit(x_train[0:1000], y_train[0:1000], epochs=35, learning_rate=0.1)
コード例 #2
0
@author: ivicino
"""

import numpy as np

from NeuralNet import NeuralNet
from fclayer import FCLayer
from activationlayer import ActivationLayer
from activations import tanh, tanh_prime
from losses import mse, mse_prime

# training data
x_train = np.array([[[0, 0]], [[0, 1]], [[1, 0]], [[1, 1]]])
y_train = np.array([[[0]], [[1]], [[1]], [[0]]])

# network
net = NeuralNet()
net.add(FCLayer(2, 3))
net.add(ActivationLayer(tanh, tanh_prime))
net.add(FCLayer(3, 1))
net.add(ActivationLayer(tanh, tanh_prime))

# train
net.use(mse, mse_prime)
net.fit(x_train, y_train, epochs=1000, learning_rate=0.05)

# test
out = net.predict(x_train)
print(out)