コード例 #1
0
ファイル: test_abc.py プロジェクト: taylorhawks/NiaPy
 def test_custom_works_fine(self):
     abc_custom = ArtificialBeeColonyAlgorithm(NP=10,
                                               Limit=2,
                                               seed=self.seed)
     abc_customc = ArtificialBeeColonyAlgorithm(NP=10,
                                                Limit=2,
                                                seed=self.seed)
     AlgorithmTestCase.algorithm_run_test(self, abc_custom, abc_customc,
                                          MyBenchmark())
コード例 #2
0
ファイル: test_abc.py プロジェクト: tuahk/NiaPy
 def setUp(self):
     self.abc_custom = ArtificialBeeColonyAlgorithm(NP=10,
                                                    D=40,
                                                    nFES=4000,
                                                    benchmark=MyBenchmark())
     self.abc_griewank = ArtificialBeeColonyAlgorithm(NP=10,
                                                      D=40,
                                                      nFES=4000,
                                                      benchmark='griewank')
コード例 #3
0
def optimize(bench, algo):
    average_mfo = 0
    average_de = 0
    average_abc = 0
    average_pso = 0
    average_ba = 0
    average_fa = 0
    average_ga = 0

    for i in np.arange(epoch):
        mfo = MothFlameOptimizer(D=dim, NP=pop, nGEN=maxIter, benchmark=bench)
        de = DifferentialEvolution(D=dim,
                                   NP=pop,
                                   nGEN=maxIter,
                                   benchmark=bench)
        abc = ArtificialBeeColonyAlgorithm(D=dim,
                                           NP=pop,
                                           nFES=maxIter,
                                           benchmark=bench)
        pso = ParticleSwarmAlgorithm(D=dim,
                                     NP=pop,
                                     nGEN=maxIter,
                                     benchmark=bench)
        ba = BatAlgorithm(D=dim, NP=pop, nFES=maxIter, benchmark=bench)
        fa = FireflyAlgorithm(D=dim, NP=pop, nFES=maxIter, benchmark=bench)
        ga = GeneticAlgorithm(D=dim, NP=pop, nFES=maxIter, benchmark=bench)

        gen, best_de = de.run()
        gen, best_mfo = mfo.run()
        gen, best_abc = abc.run()
        gen, best_pso = pso.run()
        gen, best_ba = ba.run()
        gen, best_fa = fa.run()
        gen, best_ga = ga.run()

        average_mfo += best_de / epoch
        average_de += best_mfo / epoch
        average_abc += best_abc / epoch
        average_pso += best_pso / epoch
        average_ba += best_ba / epoch
        average_fa += best_fa / epoch
        average_ga += best_ga / epoch

    print(algo, ': DE Average of Bests over', epoch, 'run: ', average_de)
    print(algo, ': MFO Average of Bests over', epoch, 'run: ', average_mfo)
    print(algo, ': ABC Average of Bests over', epoch, 'run: ', average_abc)
    print(algo, ': PSO Average of Bests over', epoch, 'run: ', average_pso)
    print(algo, ': BA Average of Bests over', epoch, 'run: ', average_ba)
    print(algo, ': FA Average of Bests over', epoch, 'run: ', average_fa)
    print(algo, ': GA Average of Bests over', epoch, 'run: ', average_ga)

    return [
        average_de, average_mfo, average_abc, average_pso, average_ba,
        average_fa, average_ga
    ]
コード例 #4
0
ファイル: test_abc.py プロジェクト: mlaky88/NiaPy
class ABCTestCase(TestCase):
    def setUp(self):
        self.abc_custom = ArtificialBeeColonyAlgorithm(10, 40, 10000,
                                                       MyBenchmark())
        self.abc_griewank = ArtificialBeeColonyAlgorithm(
            10, 40, 10000, 'griewank')

    def test_custom_works_fine(self):
        self.assertTrue(self.abc_custom.run())

    def test_griewank_works_fine(self):
        self.assertTrue(self.abc_griewank.run())
コード例 #5
0
	def test_type_parameters(self):
		d = ArtificialBeeColonyAlgorithm.typeParameters()
		self.assertEqual(len(d), 2)
		self.assertTrue(d['NP'](10))
		self.assertFalse(d['NP'](0))
		self.assertFalse(d['NP'](-10))
		self.assertTrue(d['Limit'](10))
		self.assertFalse(d['Limit'](0))
		self.assertFalse(d['Limit'](-10))
コード例 #6
0
    def __init__(self, algorithm_name, objective, maxfeval, population=30):
        super().__init__(algorithm_name, objective, maxfeval)
        self.algorithm_name = algorithm_name
        self.algo = None  #this is the suggest function from hyperopt
        if algorithm_name not in __all__:
            raise Exception('NiaPy does not have algorithm :' +
                            str(algorithm_name))

        elif self.algorithm_name == 'NiaPyABC':
            self.algo = ArtificialBeeColonyAlgorithm(NP=population, Limit=100)

        elif self.algorithm_name == 'NiaPyBat':
            self.algo = BatAlgorithm(NP=population)

        elif self.algorithm_name == 'NiaPyCuckooSearch':
            self.algo = CuckooSearch(N=population, pa=0.2, alpha=0.5)

        elif self.algorithm_name == 'NiaPyDifferentialEvolution':
            self.algo = DifferentialEvolution(NP=population, F=1, CR=0.8)

        elif self.algorithm_name == 'NiaPyFireflyAlgorithm':
            self.algo = FireflyAlgorithm(NP=population,
                                         alpha=0.5,
                                         betamin=0.2,
                                         gamma=1.0)

        elif self.algorithm_name == 'NiaPyGeneticAlgorithm':
            self.algo = FireflyAlgorithm(NP=population,
                                         Crossover=UniformCrossover,
                                         Mutation=UniformMutation,
                                         Cr=0.45,
                                         Mr=0.9)

        elif self.algorithm_name == 'NiaPyGWO':
            self.algo = GreyWolfOptimizer(NP=population)
        # config
        elif self.algorithm_name == 'NiaPyNelderMead':
            self.algo = NelderMeadMethod()
        # config
        elif self.algorithm_name == 'NiaPyPSO':
            self.algo = ParticleSwarmAlgorithm(NP=population,
                                               C1=2,
                                               C2=2,
                                               w=0.9,
                                               vMin=-1.5,
                                               vMax=1.5)

        # config

        # config
        # config
        elif self.algorithm_name == 'NiaPySimulatedAnnealing':
            self.algo = SimulatedAnnealing(coolingMethod=coolLinear)
コード例 #7
0
# encoding=utf8
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

import random
from NiaPy.algorithms.basic import ArtificialBeeColonyAlgorithm
from NiaPy.task.task import StoppingTask, OptimizationType
from NiaPy.benchmarks import Sphere

# we will run Artificial Bee Colony Algorithm for 5 independent runs
for i in range(5):
    task = StoppingTask(D=10,
                        nFES=1000,
                        optType=OptimizationType.MINIMIZATION,
                        benchmark=Sphere())
    algo = ArtificialBeeColonyAlgorithm(NP=40, Limit=2)
    best = algo.run(task=task)
    print('%s -> %s' % (best[0].x, best[1]))
コード例 #8
0
ファイル: run_abc.py プロジェクト: matejakocbek/NiaPy
# This is temporary fix to import module from parent folder
# It will be removed when package is published on PyPI
import sys
sys.path.append('../')
# End of fix

import random
from NiaPy.algorithms.basic import ArtificialBeeColonyAlgorithm


def Fun(D, sol):
    val = 0.0
    for i in range(D):
        val = val + sol[i] * sol[i]
    return val


for i in range(10):
    Algorithm = ArtificialBeeColonyAlgorithm(10, 40, 10000, -5.0, 5.0, Fun)
    Best = Algorithm.run()

    print(Best)
コード例 #9
0
ファイル: run_abc.py プロジェクト: Flyzoor/NiaPy
from NiaPy.algorithms.basic import ArtificialBeeColonyAlgorithm

logging.basicConfig()
logger = logging.getLogger('examples')
logger.setLevel('INFO')

# For reproducive results
random.seed(1234)


class MyBenchmark(object):
    def __init__(self):
        self.Lower = -5
        self.Upper = 5

    def function(self):
        def evaluate(D, sol):
            val = 0.0
            for i in range(D):
                val = val + sol[i] * sol[i]
            return val

        return evaluate


for i in range(10):
    Algorithm = ArtificialBeeColonyAlgorithm(10, 40, 10000, MyBenchmark())
    Best = Algorithm.run()

    logger.info(Best)
コード例 #10
0
	def test_griewank_works_fine(self):
		abc_griewank = ArtificialBeeColonyAlgorithm(NP=10, D=self.D, nFES=self.nFES, nGEN=self.nGEN, benchmark='griewank', seed=self.seed)
		abc_griewankc = ArtificialBeeColonyAlgorithm(NP=10, D=self.D, nFES=self.nFES, nGEN=self.nGEN, benchmark='griewank', seed=self.seed)
		AlgorithmTestCase.algorithm_run_test(self, abc_griewank, abc_griewankc)
コード例 #11
0
	def test_custom_works_fine(self):
		abc_custom = ArtificialBeeColonyAlgorithm(NP=10, D=self.D, nFES=self.nFES, nGEN=self.nGEN, Limit=2, benchmark=MyBenchmark(), seed=self.seed)
		abc_customc = ArtificialBeeColonyAlgorithm(NP=10, D=self.D, nFES=self.nFES, nGEN=self.nGEN, Limit=2, benchmark=MyBenchmark(), seed=self.seed)
		AlgorithmTestCase.algorithm_run_test(self, abc_custom, abc_customc)
コード例 #12
0
ファイル: run_abc.py プロジェクト: tuahk/NiaPy
logger.setLevel('INFO')

# For reproducive results
random.seed(1234)


class MyBenchmark(object):
    def __init__(self):
        self.Lower = -5
        self.Upper = 5

    def function(self):
        def evaluate(D, sol):
            val = 0.0
            for i in range(D):
                val = val + sol[i] * sol[i]
            return val

        return evaluate


for i in range(10):
    Algorithm = ArtificialBeeColonyAlgorithm(NP=10,
                                             D=40,
                                             nFES=10000,
                                             benchmark=MyBenchmark())
    Best = Algorithm.run()
    logger.info(Best)

# vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
コード例 #13
0
ファイル: test_abc.py プロジェクト: taylorhawks/NiaPy
 def test_griewank_works_fine(self):
     abc_griewank = ArtificialBeeColonyAlgorithm(NP=10, seed=self.seed)
     abc_griewankc = ArtificialBeeColonyAlgorithm(NP=10, seed=self.seed)
     AlgorithmTestCase.algorithm_run_test(self, abc_griewank, abc_griewankc)
コード例 #14
0
ファイル: test_abc.py プロジェクト: mlaky88/NiaPy
 def setUp(self):
     self.abc_custom = ArtificialBeeColonyAlgorithm(10, 40, 10000,
                                                    MyBenchmark())
     self.abc_griewank = ArtificialBeeColonyAlgorithm(
         10, 40, 10000, 'griewank')