def main(): start_time = datetime.now() # differential problem eq1 = lambda t, u: u[1] eq2 = lambda t, u: u[2] eq3 = lambda t, u: u[3] eq4 = lambda t, u: -8 * u[0] + np.sin(t) * u[1] - 3 * u[3] + t**2 func1 = np.array([eq1, eq2, eq3, eq4]) y0 = np.array([1., 2., 3., 4]) system1 = rhs.Rhs(func1, 0, 4, y0, 100) fwdeuler = euler.Explicit(system1) fet, feu = fwdeuler.solve() bwdeuler = euler.Backward(system1) bet, beu = bwdeuler.solve() sieuler = euler.SemiImplicit(system1) siet, sieu = sieuler.solve() Impeuler = euler.Implicit(system1) iet, ieu = Impeuler.solve() leapfrog = multistep.LeapFrog(system1) lft, lfu = leapfrog.solve() #----------------------------------------------------------------------------------------------------- end_time = datetime.now() print('Duration {}'.format(end_time - start_time)) #**{'color': 'paraview'} fig, axs = PalatinoItalic()(1, 1, figsize=(9.5, 4.5)) #axs.plot(x,y,label='Analitycal', marker='o',linestyle='',markersize=4.5,color='C0',alpha=0.7) #axs.plot(fet,feu,label='Exp Euler') axs.plot(iet, ieu, label='Imp Euler') #axs.plot(siet,sieu,label='Sem.Imp Euler') #, linestyle=':') #axs.plot(bet,beu,label='NR-BWDEuler') #, linestyle=':') #axs.plot(lft,lfu,label='Leap Frog') #axs.plot(cnt,cnu,label='Crank Nicholson') #axs.plot(amt,amu,label='Adams Moulton 5th') #,linestyle=':') #axs.plot(rkt,rku,label='Runge Kutta 4th',linestyle=':') legend = leg = axs.legend() legend.get_frame().set_linewidth(1.2) plt.setp(legend.get_texts(), color='#555555') axs.set(xlabel='time', ylabel='y(t)') axs.set_title( 'dy$_1$/dt=y$_2$; dy$_2$/dt=y$_3$; dy$_3$/dt=y$_4$ ; dy$_4$/dt=-8y$_1$+sin(t)y$_2$-3y$_4$', y=1.05) plt.savefig('ODE/Results/system01.pdf') plt.show()
def main(): start_time = datetime.now() # differential problem eq1 = lambda t, u: u[1] eq2 = lambda t, u: -1 / 2. * u[0] + 5 / 2. * u[1] func1 = np.array([eq1, eq2]) y0 = np.array([6., -1.]) system1 = rhs.Rhs(func1, 3, 5, y0, 50) fwdeuler = euler.Explicit(system1) fet, feu = fwdeuler.solve() bwdeuler = euler.Backward(system1) bet, beu = bwdeuler.solve() sieuler = euler.SemiImplicit(system1) siet, sieu = sieuler.solve() Impeuler = euler.Implicit(system1) iet, ieu = Impeuler.solve() leapfrog = multistep.LeapFrog(system1) lft, lfu = leapfrog.solve() #-------------------------------------------------------------------------------------------- end_time = datetime.now() print('Duration {}'.format(end_time - start_time)) #**{'color': 'paraview'} fig, axs = PalatinoItalic()(1, 1, figsize=(9.5, 4.5)) #axs.plot(x,y,label='Analitycal', marker='o',linestyle='',markersize=4.5,color='C0',alpha=0.7) axs.plot(fet, feu, label='Exp Euler') axs.plot(iet, ieu, label='Imp Euler') #axs.plot(siet,sieu,label='Sem.Imp Euler') #, linestyle=':') #axs.plot(bet,beu[:,3],label='NR-BWDEuler') #, linestyle=':') #axs.plot(lft,lfu,label='Leap Frog') #axs.plot(cnt,cnu,label='Crank Nicholson') #axs.plot(amt,amu,label='Adams Moulton 5th') #,linestyle=':') #axs.plot(rkt,rku,label='Runge Kutta 4th',linestyle=':') legend = leg = axs.legend() legend.get_frame().set_linewidth(1.2) plt.setp(legend.get_texts(), color='#555555') axs.set(xlabel='time', ylabel='y(t)') axs.set_title('2 y" - 5 y\' + y', y=1.05) plt.ylim(-300, 50) plt.savefig('ODE/Results/system05.pdf') plt.show()
def main(): start_time = datetime.now() ###--- differential problem ---### eq1 = lambda t, u: u[1] eq2 = lambda t, u: u[2] eq3 = lambda t, u: 4 * u[0] - 3 * u[1] + 2 * u[2] func1 = np.array([eq1, eq2, eq3]) y0 = np.array([0.1, 0.5, 0.1]) system1 = rhs.Rhs(func1, 0, 2, y0, 100) fwdeuler = euler.Explicit(system1) fet, feu = fwdeuler.solve() bwdeuler = euler.Backward(system1) bet, beu = bwdeuler.solve() sieuler = euler.SemiImplicit(system1) siet, sieu = sieuler.solve() Impeuler = euler.Implicit(system1) iet, ieu = Impeuler.solve() leapfrog = multistep.LeapFrog(system1) lft, lfu = leapfrog.solve() #---------------------------------------------------------------------------------------------- end_time = datetime.now() print('Duration {}'.format(end_time - start_time)) fig, axs = PalatinoItalic()(1, 1, figsize=(9.5, 4.5)) axs.plot(fet, feu, label='Exp Euler') axs.plot(iet, ieu, label='Imp Euler') #axs.plot(siet,sieu,label='Sem.Imp Euler') #, linestyle=':') #axs.plot(bet,beu[:,3],label='NR-BWDEuler') #, linestyle=':') #axs.plot(lft,lfu,label='Leap Frog') #axs.plot(cnt,cnu,label='Crank Nicholson') #axs.plot(amt,amu,label='Adams Moulton 5th') #,linestyle=':') #axs.plot(rkt,rku,label='Runge Kutta 4th',linestyle=':') legend = leg = axs.legend() legend.get_frame().set_linewidth(1.2) plt.setp(legend.get_texts(), color='#555555') axs.set(xlabel='time', ylabel='y(t)') axs.set_title( 'dy$_1$/dt = y$_2$ ; dy$_2$/dt = y$_3$ ; dy$_3$/dt = 4y$_1$+3y$_2$+2y$_3$ ', y=1.05) plt.savefig('ODE/Results/system04.pdf') plt.show()
def main(): start_time = datetime.now() # differential problem eq1 = lambda t, u: (2 - 0.5 * u[1]) * u[0] eq2 = lambda t, u: (-1 + 0.5 * u[0]) * u[1] func1 = np.array([eq1, eq2]) y0 = np.array([6., 2.]) system1 = rhs.Rhs(func1, 0, 15, y0, 1200) fwdeuler = euler.Explicit(system1) fet, feu = fwdeuler.solve() bwdeuler = euler.Backward(system1) bet, beu = bwdeuler.solve() sieuler = euler.SemiImplicit(system1) siet, sieu = sieuler.solve() Impeuler = euler.Implicit(system1) iet, ieu = Impeuler.solve() midpoint = centdiff.MidPoint(system1) cdt, cdu = midpoint.solve() cdiff = centdiff.CentDiff2nd(system1) cd2t, cd2u = cdiff.solve() # cranknicholson = rungekutta.CrankNicholson(problem1 , 'cn1.dat') # cnt,cnu = cranknicholson.solve() # # am5 = adamsmethods.AdamsMoulton(problem1, 'AM5_1.dat') # amt,amu = am5._5th.solve() leapfrog = multistep.LeapFrog(system1) lft, lfu = leapfrog.solve() rk3 = rungekutta.RK3(system1) rkt, rku = rk3.solve() #----------------------------------------------------------------------------------------------------- end_time = datetime.now() print('Duration {}'.format(end_time - start_time)) #**{'color': 'paraview'} #fig,axs = Standard(**{'scheme':'vega'})(1,1,figsize=(8.5,4.5))# ,**{'scheme':'nb'}) #fig,axs = StandardImproved(**{'scheme':'vega'} )(1,1,figsize=(9.5,4.5))# ,**{'scheme':'nb'}) #fig,axs = Elsevier()(1,1,figsize=(9.5,4.5))# ,**{'scheme':'nb'}) #fig,axs = Elsevier(figsize=(9.5,4.5),**{'scheme':'mycolor'})(1,1)# ,**{'scheme':'nb'}) #fig,axs = TexMathpazo(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = TexMathpazo(figsize=(9.5,4.5),**{'scheme':'mycolor'})(1,1)# ,**{'scheme':'nb'}) #fig,axs = TexMathpazoBeamer(figsize=(6.5,4.5),**{'scheme':'mycolor'})(1,1)# ,**{'scheme':'nb'}) #fig,axs = TexPaper()(1,1,figsize=(8.5,4.5))# ,**{'scheme':'nb'}) #fig,axs = Helvet()(1,1,figsize=(9.5,4.5))# ,**{'scheme':'nb'}) #fig,axs = HelvetBeamer()(1,1,figsize=(8.5,5.5))# ,**{'scheme':'nb'}) #fig,axs = Beamer()(1,1,figsize=(8.5,5.5))# ,**{'scheme':'nb'}) #fig,axs = Times()(1,1,figsize=(9.5,4.5))# ,**{'scheme':'nb'}) #fig,axs = TimesItalicDefault(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = TimesItalicImproved()(1,1,figsize=(9.5,4.5))# ,**{'scheme':'nb'}) #fig,axs = TimesItalicModified()(1,1,figsize=(9.5,4.5))# ,**{'scheme':'nb'}) #fig,axs = SansModified(figsize=(9.5,4.5),**{'scheme':'vega'} )(1,1) #fig,axs = Fonts(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = Palatino(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) fig, axs = PalatinoItalic(**{'scheme': 'gg'})( 1, 1, figsize=(9.5, 4.5)) # ,**{'scheme':'nb'}) #axs.plot(x,y,label='Analitycal', marker='o',linestyle='',markersize=4.5,color='C0',alpha=0.7) axs.plot(fet, feu, label='Exp Euler') #,color='C0') #axs.plot(iet,ieu,label='Imp Euler') #axs.plot(siet,sieu,label='Sem.Imp Euler') #, linestyle=':') axs.plot(bet, beu, label='NR-BWDEuler') #,color='C1') #, linestyle=':') #axs.plot(rkt,rku,label='RK3') #axs.plot(lft,lfu,label='Leap Frog') #, linestyle=':') #axs.plot(lft,lfu,label='Leap Frog') #axs.plot(cnt,cnu,label='Crank Nicholson') #axs.plot(amt,amu,label='Adams Moulton 5th') #,linestyle=':') #axs.plot(rkt,rku,label='Runge Kutta 3th') #axs.plot(cdt,cdu,label='Mid Point 2nd') axs.plot(cd2t, cd2u, label='CentDiff 2nd', linestyle='-') #,color='C2') chartBox = axs.get_position() legend = leg = axs.legend() legend.get_frame().set_linewidth(0.7) axs.set_position( [chartBox.x0, chartBox.y0, chartBox.width * 0.8, chartBox.height]) plt.setp(legend.get_texts(), color='#2E3436') plt.legend(bbox_to_anchor=(1.03, 0.75), loc=2, borderaxespad=0.) axs.set(xlabel='time', ylabel='y(t)') axs.set_title( 'dy$_1$/dt= (2 - 0.5y$_2$) y$_1$ ; dy$_2$/dt = (-1 +0.5 y$_1$)y$_2$', y=1.05) plt.savefig('ODE/Results/system12.pdf') plt.show()
def main(): start_time = datetime.now() a=4; c=1; # differential problem eq1 = lambda t,u : a*(u[0]-u[0]*u[1]); eq2 = lambda t,u : -c*(u[1]-u[0]*u[1]); func1 = np.array([eq1,eq2]) y0 = np.array([2.,1.]) system1 = rhs.Rhs(func1, 0,10,y0,500 ) fwdeuler = euler.Explicit(system1) fet,feu = fwdeuler.solve() bwdeuler = euler.Backward(system1) bet,beu = bwdeuler.solve() sieuler = euler.SemiImplicit(system1) siet,sieu = sieuler.solve() Impeuler = euler.Implicit(system1) iet,ieu = Impeuler.solve() leapfrog = multistep.LeapFrog(system1) lft,lfu = leapfrog.solve() rk3 = rungekutta.RK3(system1) rkt,rku = rk3.solve() fig,axs = SansItalic()(1,1,figsize=(9.5,4.5))# ,**{'scheme':'nb'}) #---------------------------------------------------------------------------------------------- end_time = datetime.now() print('Duration {}'.format(end_time - start_time)) #**{'color': 'paraview'} #fig,axs = Standard(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = StandardImproved(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = Elsevier(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = TexMathpazo(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = TexMathpazoBeamer(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = Beamer(figsize=(6.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = TexPaper(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = Helvet(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = HelvetBeamer(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = Times(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = TimesItalicDefault(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = TimesItalicImproved(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = PalatinoItalic(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) #fig,axs = Fonts(figsize=(9.5,4.5))(1,1)# ,**{'scheme':'nb'}) axs.plot(fet,feu,label='Exp Euler') #axs.plot(iet,ieu,label='Imp Euler') #axs.plot(siet,sieu,label='Sem.Imp Euler') #, linestyle=':') axs.plot(bet,beu,label='NR-BWDEuler') #, linestyle=':') axs.plot(lft,lfu,label='Leap Frog') #axs.plot(cnt,cnu,label='Crank Nicholson') #axs.plot(amt,amu,label='Adams Moulton 5th') #,linestyle=':') #axs.plot(rkt,rku,label='Runge Kutta 3th',linestyle=':') legend = leg = axs.legend() legend.get_frame().set_linewidth(1.2) plt.legend(loc='upper left') #axs.plot(x,y,label='Analitycal', marker='o',linestyle='',markersize=4.5,color='C0',alpha=0.7) plt.setp(legend.get_texts(), color='#555555') axs.set(xlabel = 'time' ,ylabel='y(t)') axs.set_title('dy$_1$/dt= -4 (y$_1$ - y$_1$y$_2$) ; dy$_2$/dt = -1(y$_2$ - y$_1$y$_2$)',y=1.05) plt.savefig('../Results/system02.pdf') plt.show()
def main(): start_time = datetime.now() # differential problem m = 10 k = 3 g = 0.5 eq1 = lambda t, u: u[1] eq2 = lambda t, u: -k / m * u[0] - g / m * u[1] + np.sin(t) / m func1 = np.array([eq1, eq2]) y0 = np.array([0.1, 0.1]) system1 = rhs.Rhs(func1, 0, 50, y0, 1000) fwdeuler = euler.Explicit(system1) fet, feu = fwdeuler.solve() bwdeuler = euler.Backward(system1) bet, beu = bwdeuler.solve() sieuler = euler.SemiImplicit(system1) siet, sieu = sieuler.solve() Impeuler = euler.Implicit(system1) iet, ieu = Impeuler.solve() leapfrog = multistep.LeapFrog(system1) lft, lfu = leapfrog.solve() # cranknicholson = rungekutta.CrankNicholson(problem1 , 'cn1.dat') # cnt,cnu = cranknicholson.solve() # # am5 = adamsmethods.AdamsMoulton(problem1, 'AM5_1.dat') # amt,amu = am5._5th.solve() # # rk4 = rungekutta.RK4(problem1,'RK4.dat') # rkt,rku = rk4.solve() #---------------------------------------------------------------------------------------------- end_time = datetime.now() print('Duration {}'.format(end_time - start_time)) #**{'color': 'paraview'} fig, axs = PalatinoItalic()(1, 1, figsize=(9.5, 4.5)) #axs.plot(x,y,label='Analitycal', marker='o',linestyle='',markersize=4.5,color='C0',alpha=0.7) axs.plot(fet, feu, label='Exp Euler') axs.plot(iet, ieu, label='Imp Euler') #axs.plot(siet,sieu,label='Sem.Imp Euler') #, linestyle=':') #axs.plot(bet,beu[:,3],label='NR-BWDEuler') #, linestyle=':') #axs.plot(lft,lfu,label='Leap Frog') #axs.plot(cnt,cnu,label='Crank Nicholson') #axs.plot(amt,amu,label='Adams Moulton 5th') #,linestyle=':') #axs.plot(rkt,rku,label='Runge Kutta 4th',linestyle=':') legend = leg = axs.legend() legend.get_frame().set_linewidth(1.2) plt.setp(legend.get_texts(), color='#555555') axs.set(xlabel='time', ylabel='y(t)') axs.set_title( 'dy$_1$/dt = y$_2$ ; dy$_2$/dt = -k/m y$_1$ -g/m y$_2$ + sin(t)/m ', y=1.05) plt.savefig('ODE/Results/system03.pdf') plt.show()