コード例 #1
0
ファイル: insertion_driver.py プロジェクト: hrishi32/mtp
def get_all_errors(input_file, n_pairs, compensation1, compensation2):
    count = 1
    avg_batch_error_a = []
    avg_batch_error_b = []
    avg_batch_error_c = []
    
    avg_batch_time_a = []
    avg_batch_time_b = []
    avg_batch_time_c = []
    data_array = load_data(input_file,n_pairs)
    N = data_array[0].size
    M = 2000

    dataset = input_file.split('.')[1]
    
    while count < n_pairs-1:
        
        mapping = mapper(N,M)
        bits = mapping.bits
        maps = mapping.map

        print(count)
        
        # print ("* Input Dimension of Dataset:",N)
        # print ("* Output (compressed) Dimension of Dataset:",M)
        alpha = 1

        arr1 = data_array[count-1]
        arr2 = data_array[count]

        # print ("* Selected array (1) from Dataset:",arr1)
        # print ("* Selected array (2) from Dataset:",arr2)

        norm_arr_1 = array_normalization(arr1)
        norm_arr_2 = array_normalization(arr2)

        # norm_arr_1 = arr1
        # norm_arr_2 = arr2

        # print ("* Normalized array (1):",norm_arr_1)
        # print ("* Normalized array (2):",norm_arr_2)

        batch_error_a, batch_time_a, batch_inner_product1_a,batch_inner_product2_a,_,_ = get_feature_deletion_results(Input_dimension = N,Output_dimension = M,default_bits=bits,default_maps=maps,array1=norm_arr_1,array2=norm_arr_2,mapping_scheme=5,max_value=alpha)

        # plt.plot(range(len(batch_error)), batch_error, label = "Error Without Compensation")
        # plt.plot(range(len(batch_inner_product1)), batch_inner_product1, label = "IP1 Without Compensation")
        # plt.plot(range(len(batch_inner_product2)), batch_inner_product2, label = "IP2 Without Compensation")

        batch_error_b, batch_time_b,batch_inner_product1_b,batch_inner_product2_b,_,_ = get_feature_deletion_results(Input_dimension = N,Output_dimension = M,default_bits=bits,default_maps=maps,array1=norm_arr_1,array2=norm_arr_2,mapping_scheme=6,max_value=alpha)

        batch_error_c, batch_time_c, batch_inner_product1_c,batch_inner_product2_c,_,_ = get_remap_results(Input_dimension = N,Output_dimension = M,array1=norm_arr_1,array2=norm_arr_2,mapping_scheme=6)
        # batch_error_c,batch_inner_product1_c,batch_inner_product2_c,_,_ = get_feature_deletion_results(Input_dimension = N,Output_dimension = M,default_bits=bits,default_maps=maps,array1=norm_arr_1,array2=norm_arr_2,mapping_scheme=8,max_value=alpha)

        # print(batch_error,batch_inner_product1,batch_inner_product2,array1,array2)

        # plt.plot(range(len(batch_error)), batch_error, label = "Error With Compensation")
        # plt.plot(range(len(batch_inner_product1)), batch_inner_product1, label = "IP1 With Compensation")
        # plt.plot(range(len(batch_inner_product2)), batch_inner_product2, label = "IP2 With Compensation")
        # plt.legend()
        # plt.show()
        if count == 1:
            avg_batch_error_a = batch_error_a
            avg_batch_error_b = batch_error_b
            avg_batch_error_c = batch_error_c

            avg_batch_time_a = batch_time_a
            avg_batch_time_b = batch_time_b
            avg_batch_time_c = batch_time_c

            # avg_inner_product1_a = batch_inner_product1_a
            # avg_inner_product2_a = batch_inner_product2_a
            # avg_inner_product1_b = batch_inner_product1_b
            # avg_inner_product2_b = batch_inner_product2_b
            # avg_inner_product1_c = batch_inner_product1_c
            # avg_inner_product2_c = batch_inner_product2_c

        else :
            for i in range(len(batch_error_a)):
                avg_batch_error_a[i] += batch_error_a[i]
                avg_batch_error_b[i] += batch_error_b[i]
                avg_batch_error_c[i] += batch_error_c[i]

                avg_batch_time_a[i] += batch_time_a[i]
                avg_batch_time_b[i] += batch_time_b[i]
                avg_batch_time_c[i] += batch_time_c[i]

                # avg_inner_product1_a[i] += batch_inner_product1_a[i]
                # avg_inner_product2_a[i] += batch_inner_product2_a[i]
                # avg_inner_product1_b[i] += batch_inner_product1_b[i]
                # avg_inner_product2_b[i] += batch_inner_product2_b[i]
                # avg_inner_product1_c[i] += batch_inner_product1_c[i]
                # avg_inner_product2_c[i] += batch_inner_product2_c[i]

        if count%50 == 0 or count == n_pairs-2:
            np.save('/home/b16032/MTP/Dimensionality-Reduction/Test Files/Outputs/insertion/13March_testing_'+dataset+'_'+str(count)+'.npy', [ (np.array(avg_batch_error_a)/count, np.array(batch_time_a)/count), (np.array(avg_batch_error_b)/count, np.array(batch_time_b)/count), (np.array(avg_batch_error_c)/count, np.array(batch_time_c)/count) ])

        count += 1

    for i in range(len(avg_batch_error_a)):
        avg_batch_error_a[i] /= n_pairs
        avg_batch_error_b[i] /= n_pairs
        avg_batch_error_c[i] /= n_pairs

        avg_batch_time_a[i] /= n_pairs
        avg_batch_time_b[i] /= n_pairs
        avg_batch_time_c[i] /= n_pairs

        # avg_inner_product1_a[i] /= n_pairs
        # avg_inner_product2_a[i] /= n_pairs
        # avg_inner_product1_b[i] /= n_pairs
        # avg_inner_product2_b[i] /= n_pairs
        # avg_inner_product1_c[i] /= n_pairs
        # avg_inner_product2_c[i] /= n_pairs

    return avg_batch_error_a,  avg_batch_error_b, avg_batch_error_c, avg_batch_time_a, avg_batch_time_b, avg_batch_time_c
コード例 #2
0
from os.path import abspath, exists
import numpy as np
from Object_Files.mapper5 import mapper
from Object_Files.basic_operator import operator
#import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import random

mapping = mapper(28102, 2000)
default_bits = mapping.bits
default_maps = mapping.map


def array_normalization(input_array):
    array_norm = np.linalg.norm(input_array)
    # print ("array norm:",array_norm)
    result = np.zeros(input_array.size, dtype=float)
    for i in range(input_array.size):
        result[i] = (1.0 * input_array[i]) / array_norm

    return result


def get_adversarial_positions(demo_operator, batch_feature_size):
    feature_counter = demo_operator.get_feature_counter()
    # print ("Originl feature counter:",feature_counter)
    batch_positions = []
    alpha_map = np.zeros(len(feature_counter))
    while len(batch_positions) < batch_feature_size:
コード例 #3
0
from Object_Files.mapper5 import mapper, np
from Object_Files.basic_operator import operator
import matplotlib.pyplot as plt
import random

mapping = mapper(50000, 3000)
default_bits = mapping.bits
default_maps = mapping.map


def array_normalization(input_array):
    array_norm = np.linalg.norm(input_array)
    # print ("array norm:",array_norm)
    result = np.zeros(input_array.size, dtype=float)
    for i in range(input_array.size):
        result[i] = (1.0 * input_array[i]) / array_norm

    return result


def get_adversarial_positions(demo_operator, batch_feature_size):
    feature_counter = demo_operator.get_feature_counter()
    print("Originl feature counter:", demo_operator.get_feature_count())
    batch_positions = []
    alpha_map = np.zeros(len(feature_counter))
    while len(batch_positions) < batch_feature_size:
        alpha = random.randint(0, len(feature_counter) - 1)
        if alpha_map[alpha] == 1:
            continue
        else:
            alpha_map[alpha] = 1
コード例 #4
0
ファイル: real_world_test.py プロジェクト: hrishi32/mtp
def main():
    input_file = sys.argv[1]
    compensation1, compensation2, compensation3 = 0, 1, 2  # 0 = No Compensaation, 1 = 1 step Compensation, 2 = 2 step
    n_args = len(sys.argv)
    if n_args > 2:
        compensation1 = int(sys.argv[2])
        compensation2 = int(sys.argv[3])

    m1, m2 = 5, 6  #One without compensation, other with one step compensation
    if compensation1 == 0:
        m1 = 5
    elif compensation1 == 1:
        m1 = 6
    else:
        m1 = 8

    if compensation2 == 0:
        m2 = 5
    elif compensation2 == 1:
        m2 = 6
    else:
        m2 = 8

    n_pairs = 100

    if n_args > 4:
        n_pairs = int(sys.argv[4])

    count = 1
    avg_batch_error_a = []
    avg_batch_error_b = []
    avg_inner_product1_a = []
    avg_inner_product2_a = []
    avg_inner_product1_b = []
    avg_inner_product2_b = []
    data_array = load_data(input_file, n_pairs)
    N = data_array[0].size
    M = 2000

    while count < n_pairs - 1:

        mapping = mapper(N, M)
        bits = mapping.bits
        maps = mapping.map

        print(count)

        # print ("* Input Dimension of Dataset:",N)
        # print ("* Output (compressed) Dimension of Dataset:",M)
        alpha = 1

        arr1 = data_array[count - 1]
        arr2 = data_array[count]

        # print ("* Selected array (1) from Dataset:",arr1)
        # print ("* Selected array (2) from Dataset:",arr2)

        norm_arr_1 = array_normalization(arr1)
        norm_arr_2 = array_normalization(arr2)

        # norm_arr_1 = arr1
        # norm_arr_2 = arr2

        # print ("* Normalized array (1):",norm_arr_1)
        # print ("* Normalized array (2):",norm_arr_2)

        batch_error_a, batch_inner_product1_a, batch_inner_product2_a, _, _ = get_feature_deletion_results(
            Input_dimension=N,
            Output_dimension=M,
            default_bits=bits,
            default_maps=maps,
            array1=norm_arr_1,
            array2=norm_arr_2,
            mapping_scheme=5,
            max_value=alpha)

        # plt.plot(range(len(batch_error)), batch_error, label = "Error Without Compensation")
        # plt.plot(range(len(batch_inner_product1)), batch_inner_product1, label = "IP1 Without Compensation")
        # plt.plot(range(len(batch_inner_product2)), batch_inner_product2, label = "IP2 Without Compensation")

        batch_error_b, batch_inner_product1_b, batch_inner_product2_b, _, _ = get_feature_deletion_results(
            Input_dimension=N,
            Output_dimension=M,
            default_bits=bits,
            default_maps=maps,
            array1=norm_arr_1,
            array2=norm_arr_2,
            mapping_scheme=6,
            max_value=alpha)

        batch_error_c, batch_inner_product1_c, batch_inner_product2_c, _, _ = get_remap_results(
            Input_dimension=N,
            Output_dimension=M,
            array1=norm_arr_1,
            array2=norm_arr_2,
            mapping_scheme=8)
        # batch_error_c,batch_inner_product1_c,batch_inner_product2_c,_,_ = get_feature_deletion_results(Input_dimension = N,Output_dimension = M,default_bits=bits,default_maps=maps,array1=norm_arr_1,array2=norm_arr_2,mapping_scheme=8,max_value=alpha)

        # print(batch_error,batch_inner_product1,batch_inner_product2,array1,array2)

        # plt.plot(range(len(batch_error)), batch_error, label = "Error With Compensation")
        # plt.plot(range(len(batch_inner_product1)), batch_inner_product1, label = "IP1 With Compensation")
        # plt.plot(range(len(batch_inner_product2)), batch_inner_product2, label = "IP2 With Compensation")
        # plt.legend()
        # plt.show()
        if count == 1:
            avg_batch_error_a = batch_error_a
            avg_batch_error_b = batch_error_b
            avg_batch_error_c = batch_error_c

            # avg_inner_product1_a = batch_inner_product1_a
            # avg_inner_product2_a = batch_inner_product2_a
            # avg_inner_product1_b = batch_inner_product1_b
            # avg_inner_product2_b = batch_inner_product2_b
            # avg_inner_product1_c = batch_inner_product1_c
            # avg_inner_product2_c = batch_inner_product2_c

        else:
            for i in range(len(batch_error_a)):
                avg_batch_error_a[i] += batch_error_a[i]
                avg_batch_error_b[i] += batch_error_b[i]
                avg_batch_error_c[i] += batch_error_c[i]

                # avg_inner_product1_a[i] += batch_inner_product1_a[i]
                # avg_inner_product2_a[i] += batch_inner_product2_a[i]
                # avg_inner_product1_b[i] += batch_inner_product1_b[i]
                # avg_inner_product2_b[i] += batch_inner_product2_b[i]
                # avg_inner_product1_c[i] += batch_inner_product1_c[i]
                # avg_inner_product2_c[i] += batch_inner_product2_c[i]
        count += 1

    for i in range(len(avg_batch_error_a)):
        avg_batch_error_a[i] /= n_pairs
        avg_batch_error_b[i] /= n_pairs
        avg_batch_error_c[i] /= n_pairs

        # avg_inner_product1_a[i] /= n_pairs
        # avg_inner_product2_a[i] /= n_pairs
        # avg_inner_product1_b[i] /= n_pairs
        # avg_inner_product2_b[i] /= n_pairs
        # avg_inner_product1_c[i] /= n_pairs
        # avg_inner_product2_c[i] /= n_pairs

    plt.plot(range(len(avg_batch_error_a)),
             np.array(avg_batch_error_a)**2,
             label="NO Compensation")
    # plt.plot(range(len(avg_inner_product1_a)), avg_inner_product1_a, label = "IP1 With "+str(compensation1)+" step Compensation")
    # plt.plot(range(len(avg_inner_product2_a)), avg_inner_product2_a, label = "IP2 With "+str(compensation1)+" step Compensation")

    plt.plot(range(len(avg_batch_error_b)),
             np.array(avg_batch_error_b)**2,
             label="One Step Compensation")
    # plt.plot(range(len(avg_inner_product1_b)), avg_inner_product1_b, label = "IP1 With "+str(compensation2)+" step Compensation")
    # plt.plot(range(len(avg_inner_product2_b)), avg_inner_product2_b, label = "IP2 With "+str(compensation2)+" step Compensation")

    plt.plot(range(len(avg_batch_error_c)),
             np.array(avg_batch_error_c)**2,
             label="Remap")
    # plt.plot(range(len(avg_inner_product1_c)), avg_inner_product1_c, label = "IP1 With "+str(compensation3)+" step Compensation")
    # plt.plot(range(len(avg_inner_product2_c)), avg_inner_product2_c, label = "IP2 With "+str(compensation3)+" step Compensation")
    plt.xlabel("% of features deleted")
    plt.ylabel("MSE")
    plt.legend()

    #plt.show()
    plt.savefig(
        '/home/b16032/MTP/Dimensionality-Reduction/Test Files/Plots/KOS_square_27-2-2020.png'
    )