コード例 #1
0
model.add(FullyConnectedLayer(len(chars)))
model.add(ActivationLayer(Activations.softmax))


def sample(a, temperature=1.0):
    # helper function to sample an index from a probability array
    a = np.log(a) / temperature
    a = np.exp(a) / np.sum(np.exp(a))
    return np.argmax(np.random.multinomial(1, a, 1))

# train the model, output generated text after each iteration
for iteration in range(1, 60):
    print()
    print('-' * 50)
    print('Iteration', iteration)
    model.train(X, y, num_epochs=1)

    start_index = random.randint(0, len(text) - maxlen - 1)

    for diversity in [0.2, 0.5, 1.0, 1.2]:
        print()
        print('----- diversity:', diversity)

        generated = ''
        sentence = text[start_index: start_index + maxlen]
        generated += sentence
        print('----- Generating with seed: "' + sentence + '"')
        sys.stdout.write(generated)

        for iteration in range(400):
            x = np.zeros((1, maxlen, len(chars)))
コード例 #2
0
        for iteration in range(40):
            x = np.zeros((1, maxlen, len(chars)))
            for t, char in enumerate(sentence):
                x[0, t, char_indices[char]] = 1.
            preds = model.predict(x)[0]
            try:
                next_index = sample(preds, diversity)
                next_char = indices_char[next_index]
                generated += next_char
                sentence = sentence[1:] + next_char
                sys.stdout.write(next_char)
                sys.stdout.flush()
            except ValueError:
                print("Value Error")

model.train(X_train, y_train, num_epochs=num_epochs,
            epoch_callback=predict)
end_time_1 = time.clock()
t1 = end_time_1 - start_time_1

ok.save_model(model)
del model
model = ok.load_model()

model.reinforce(X_train, y_train, num_epochs=num_epochs,
                epoch_callback=predict)

'''start_time_2 = time.clock()
model_keras = Sequential()
model_keras.add(GRU(h_layer_size, input_dim=len(chars),
                init='normal', return_sequences=False))
model_keras.add(BatchNormalization(mode=1))