def test_read_simple(self): f = tempfile.NamedTemporaryFile(delete=False) f.write(simple_file.encode("ascii")) f.close() try: X, Y, metas, attr_indices, class_indices, meta_indices = \ _io.sparse_read_float(f.name.encode("ascii")) self.assertEqual( attr_indices, { b"abc": 0, b"def": 1, b"g": 2, b"h": 3, b"ij k": 4, b"t": 5, b"ij": 6, b"kl": 7, b"m": 8 }) np.testing.assert_almost_equal( X.data, [1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1, 1]) np.testing.assert_equal(X.indices, [0, 1, 2, 3, 4, 5, 1, 2, 3, 6, 7, 8, 1]) np.testing.assert_equal(X.indptr, [0, 6, 12, 13]) self.assertEqual(class_indices, {}) self.assertIsNone(Y) self.assertEqual(meta_indices, {}) self.assertIsNone(metas) finally: os.remove(f.name)
def test_read_complex(self): f = tempfile.NamedTemporaryFile(delete=False) f.write(complex_file.encode("ascii")) f.close() try: X, Y, metas, attr_indices, class_indices, meta_indices = \ _io.sparse_read_float(f.name.encode("ascii")) self.assertEqual(attr_indices, { b"abc": 0, b"g": 1, b"h": 2, b"ij": 3 }) np.testing.assert_equal(X.data, [1, 1, 1, 1, 1, 1, 1]) np.testing.assert_equal(X.indices, [0, 1, 2, 3, 1, 2, 3]) np.testing.assert_equal(X.indptr, [0, 4, 7, 7]) self.assertEqual(class_indices, {b"k": 0, b"t": 1, b"kl": 2}) np.testing.assert_equal(Y.data, [5, 1, 1, 4]) np.testing.assert_equal(Y.indices, [0, 1, 0, 2]) np.testing.assert_equal(Y.indptr, [0, 2, 4, 4]) self.assertEqual(meta_indices, {b"m": 0, b"def": 1}) np.testing.assert_equal(metas.data, [1, 1]) np.testing.assert_equal(metas.indices, [0, 1]) np.testing.assert_equal(metas.indptr, [0, 0, 1, 2]) finally: os.remove(f.name)
def test_read_complex(self): f = tempfile.NamedTemporaryFile(delete=False) f.write(complex_file.encode("ascii")) f.close() try: X, Y, metas, attr_indices, class_indices, meta_indices = \ _io.sparse_read_float(f.name.encode("ascii")) self.assertEqual(attr_indices, {b"abc": 0, b"g": 1, b"h": 2, b"ij": 3}) np.testing.assert_equal(X.data, [1, 1, 1, 1, 1, 1, 1]) np.testing.assert_equal(X.indices, [0, 1, 2, 3, 1, 2, 3]) np.testing.assert_equal(X.indptr, [0, 4, 7, 7]) self.assertEqual(class_indices, {b"k": 0, b"t": 1, b"kl": 2}) np.testing.assert_equal(Y.data, [5, 1, 1, 4]) np.testing.assert_equal(Y.indices, [0, 1, 0, 2]) np.testing.assert_equal(Y.indptr, [0, 2, 4, 4]) self.assertEqual(meta_indices, {b"m": 0, b"def": 1}) np.testing.assert_equal(metas.data, [ 1, 1]) np.testing.assert_equal(metas.indices, [ 0, 1]) np.testing.assert_equal(metas.indptr, [0, 0, 1, 2]) finally: os.remove(f.name)
def test_read_simple(self): f = tempfile.NamedTemporaryFile(delete=False) f.write(simple_file.encode("ascii")) f.close() try: X, Y, metas, attr_indices, class_indices, meta_indices = \ _io.sparse_read_float(f.name.encode("ascii")) self.assertEqual(attr_indices, {b"abc": 0, b"def": 1, b"g": 2, b"h": 3, b"ij k": 4, b"t": 5, b"ij": 6, b"kl": 7, b"m": 8}) np.testing.assert_almost_equal(X.data, [1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1, 1]) np.testing.assert_equal(X.indices, [0, 1, 2, 3, 4, 5, 1, 2, 3, 6, 7, 8, 1]) np.testing.assert_equal(X.indptr, [0, 6, 12, 13]) self.assertEqual(class_indices, {}) self.assertIsNone(Y) self.assertEqual(meta_indices, {}) self.assertIsNone(metas) finally: os.remove(f.name)
def read(self): def constr_vars(inds): if inds: return [ContinuousVariable(x.decode("utf-8")) for _, x in sorted((ind, name) for name, ind in inds.items())] X, Y, metas, attr_indices, class_indices, meta_indices = \ _io.sparse_read_float(self.filename.encode(sys.getdefaultencoding())) attrs = constr_vars(attr_indices) classes = constr_vars(class_indices) meta_attrs = constr_vars(meta_indices) domain = Domain(attrs, classes, meta_attrs) return Table.from_numpy( domain, attrs and X, classes and Y, metas and meta_attrs)
def read_file(cls, filename, storage_class=None): if storage_class is None: from ..data import Table as storage_class def constr_vars(inds): if inds: return [ContinuousVariable(x.decode("utf-8")) for _, x in sorted((ind, name) for name, ind in inds.items())] X, Y, metas, attr_indices, class_indices, meta_indices = \ _io.sparse_read_float(filename.encode(sys.getdefaultencoding())) attrs = constr_vars(attr_indices) classes = constr_vars(class_indices) meta_attrs = constr_vars(meta_indices) domain = Domain(attrs, classes, meta_attrs) return storage_class.from_numpy( domain, attrs and X, classes and Y, metas and meta_attrs)
def read_file(cls, filename, storage_class=None): if storage_class is None: from ..data import Table as storage_class def constr_vars(inds): if inds: return [ ContinuousVariable(x.decode("utf-8")) for _, x in sorted( (ind, name) for name, ind in inds.items()) ] X, Y, metas, attr_indices, class_indices, meta_indices = \ _io.sparse_read_float(filename.encode(sys.getdefaultencoding())) attrs = constr_vars(attr_indices) classes = constr_vars(class_indices) meta_attrs = constr_vars(meta_indices) domain = Domain(attrs, classes, meta_attrs) return storage_class.from_numpy(domain, attrs and X, classes and Y, metas and meta_attrs)