コード例 #1
0
    def test_set_preprocessor(self):
        """
        Test preprocessor set
        """
        w = self.widget

        preprocessor = Continuize()

        # check if empty
        self.assertIn(w.preprocessors, [[], None])

        self.send_signal(w.Inputs.preprocessor, preprocessor)

        # check preprocessor is set
        self.assertEqual(w.preprocessors, [preprocessor])
        self.assertIn(preprocessor,
                      self.get_output(w.Outputs.learner).preprocessors)

        # remove preprocessor
        self.send_signal(w.Inputs.preprocessor, None)

        self.assertIn(w.preprocessors, [[], None])
        self.assertNotIn(preprocessor,
                         self.get_output(w.Outputs.learner).preprocessors)

        # change preprocessor
        preprocessor = Continuize()
        self.send_signal(w.Inputs.preprocessor, preprocessor)

        # check preprocessor is set
        self.assertEqual(w.preprocessors, [preprocessor])
        self.assertIn(preprocessor,
                      self.get_output(w.Outputs.learner).preprocessors)
コード例 #2
0
class RadViz(LinearProjector):
    name = "RadViz"
    supports_sparse = False
    preprocessors = [RemoveNaNRows(),
                     Continuize(multinomial_treatment=Continuize.FirstAsBase),
                     Normalize(norm_type=Normalize.NormalizeBySpan)]
    projection = RadVizModel

    def __call__(self, data):
        if data is not None:
            if len([attr for attr in data.domain.attributes
                    if attr.is_discrete and len(attr.values) > 2]):
                raise ValueError("Can not handle categorical variables"
                                 " with more than two values")
        return super().__call__(data)

    def get_components(self, X, Y):
        return np.array([
            (np.cos(t), np.sin(t)) for t in
            [2.0 * np.pi * (i / X.shape[1]) for i in range(X.shape[1])]]).T

    def transform(self, X):
        table = np.zeros((X.shape[0], 2))
        for i in range(X.shape[0]):
            row = np.repeat(np.expand_dims(X[i], axis=1), 2, axis=1)
            with np.errstate(divide='ignore', invalid='ignore'):
                s = X[i].sum()
                table[i] = np.divide((self.components_.T * row).sum(axis=0),
                                     s, where=s != 0)
        return table
コード例 #3
0
 def _design_matrix(self, data):
     """ Create a design matrix with Continuized variables and a bias term.
         Can contain both meta and class variables. """
     assert len(self.batch_vars) > 0
     df = data[:, self.batch_vars]
     dom = df.domain.metas + df.domain.class_vars
     X = np.hstack((df.metas,
                    df.Y.reshape((len(data), len(df.domain.class_vars)))))
     Z = Continuize()(Table.from_numpy(domain=Domain(attributes=dom), X=X)).X
     return np.hstack((np.ones((len(df), 1)), Z))
コード例 #4
0
    def test_set_preprocessor(self):
        """
        Test preprocessor set
        """
        w = self.widget

        preprocessor = Continuize()

        # check if empty
        self.assertIn(w.preprocessors, [[], None])

        self.send_signal("Preprocessor", preprocessor)

        # check preprocessor is set
        self.assertEqual(w.preprocessors, [preprocessor])
        self.assertIn(preprocessor, self.get_output("Learner").preprocessors)

        # remove preprocessor
        self.send_signal("Preprocessor", None)

        self.assertIn(w.preprocessors, [[], None])
        self.assertNotIn(preprocessor,
                         self.get_output("Learner").preprocessors)

        # set it again
        preprocessor = Discretize()
        self.send_signal("Preprocessor", preprocessor)

        # check preprocessor is set
        self.assertEqual(w.preprocessors, [preprocessor])
        self.assertIn(preprocessor, self.get_output("Learner").preprocessors)

        # change preprocessor
        preprocessor = Continuize()
        self.send_signal("Preprocessor", preprocessor)

        # check preprocessor is set
        self.assertEqual(w.preprocessors, [preprocessor])
        self.assertIn(preprocessor, self.get_output("Learner").preprocessors)
コード例 #5
0
 def test_continuize_pickling(self):
     c = Continuize(multinomial_treatment=Continuize.FirstAsBase)
     s = pickle.dumps(c, -1)
     c1 = pickle.loads(s)
     self.assertIs(c1.multinomial_treatment, c.multinomial_treatment)
コード例 #6
0
ファイル: freeviz.py プロジェクト: szzyiit/orange3
class FreeViz(LinearProjector):
    name = 'FreeViz'
    supports_sparse = False
    preprocessors = [
        RemoveNaNRows(),
        Continuize(multinomial_treatment=Continuize.FirstAsBase),
        Scale(scale=Scale.Span)
    ]
    projection = FreeVizModel

    def __init__(self,
                 weights=None,
                 center=True,
                 scale=True,
                 dim=2,
                 p=1,
                 initial=None,
                 maxiter=500,
                 alpha=0.1,
                 atol=1e-5,
                 preprocessors=None):
        super().__init__(preprocessors=preprocessors)
        self.weights = weights
        self.center = center
        self.scale = scale
        self.dim = dim
        self.p = p
        self.initial = initial
        self.maxiter = maxiter
        self.alpha = alpha
        self.atol = atol
        self.is_class_discrete = False
        self.components_ = None

    def __call__(self, data):
        if data is not None:
            self.is_class_discrete = data.domain.class_var.is_discrete
            if len([
                    attr for attr in data.domain.attributes
                    if attr.is_discrete and len(attr.values) > 2
            ]):
                raise ValueError("Can not handle discrete variables"
                                 " with more than two values")
        return super().__call__(data)

    def get_components(self, X, Y):
        return self.freeviz(X,
                            Y,
                            weights=self.weights,
                            center=self.center,
                            scale=self.scale,
                            dim=self.dim,
                            p=self.p,
                            initial=self.initial,
                            maxiter=self.maxiter,
                            alpha=self.alpha,
                            atol=self.atol,
                            is_class_discrete=self.is_class_discrete)[1].T

    @classmethod
    def squareform(cls, d):
        """
        Parameters
        ----------
        d : (N * (N - 1) // 2, ) ndarray
            A hollow symmetric square array in condensed form

        Returns
        -------
        D : (N, N) ndarray
            A symmetric square array in redundant form.

        See also
        --------
        scipy.spatial.distance.squareform
        """
        assert d.ndim == 1
        return scipy.spatial.distance.squareform(d, checks=False)

    @classmethod
    def row_v(cls, a):
        """
        Return a view of `a` as a row vector.
        """
        return a.reshape((1, -1))

    @classmethod
    def col_v(cls, a):
        """
        Return a view of `a` as a column vector.
        """
        return a.reshape((-1, 1))

    @classmethod
    def allclose(cls, a, b, rtol=1e-5, atol=1e-8, equal_nan=False):
        # same as np.allclose in numpy==1.10
        return np.all(np.isclose(a, b, rtol, atol, equal_nan=equal_nan))

    @classmethod
    def forces_regression(cls, distances, y, p=1):
        y = np.asarray(y)
        ydist = scipy.spatial.distance.pdist(y.reshape(-1, 1), "sqeuclidean")
        mask = distances > np.finfo(distances.dtype).eps * 100
        F = ydist
        if p == 1:
            F[mask] /= distances[mask]
        else:
            F[mask] /= distances[mask]**p
        return F

    @classmethod
    def forces_classification(cls, distances, y, p=1):
        diffclass = scipy.spatial.distance.pdist(y.reshape(-1, 1),
                                                 "hamming") != 0
        # handle attractive force
        if p == 1:
            F = -distances
        else:
            F = -(distances**p)

        # handle repulsive force
        mask = (diffclass & (distances > np.finfo(distances.dtype).eps * 100))
        assert mask.shape == F.shape and mask.dtype == bool
        if p == 1:
            F[mask] = 1 / distances[mask]
        else:
            F[mask] = 1 / (distances[mask]**p)
        return F

    @classmethod
    def gradient(cls,
                 X,
                 embeddings,
                 forces,
                 embedding_dist=None,
                 weights=None):
        X = np.asarray(X)
        embeddings = np.asarray(embeddings)

        if weights is not None:
            weights = np.asarray(weights)
            if weights.ndim != 1:
                raise ValueError("weights.ndim != 1 ({})".format(weights.ndim))

        N, P = X.shape
        _, dim = embeddings.shape

        if not N == embeddings.shape[0]:
            raise ValueError(
                "X and embeddings must have the same length ({}!={})".format(
                    X.shape[0], embeddings.shape[0]))

        if weights is not None and X.shape[0] != weights.shape[0]:
            raise ValueError("X.shape[0] != weights.shape[0] ({}!={})".format(
                X.shape[0], weights.shape[0]))

        # all pairwise vector differences between embeddings
        embedding_diff = (embeddings[:, np.newaxis, :] -
                          embeddings[np.newaxis, :, :])
        assert embedding_diff.shape == (N, N, dim)
        assert cls.allclose(embedding_diff[0, 1],
                            embeddings[0] - embeddings[1])
        assert cls.allclose(embedding_diff[1, 0], -embedding_diff[0, 1])

        # normalize the direction vectors to unit direction vectors
        if embedding_dist is not None:
            # use supplied precomputed distances
            diff_norm = cls.squareform(embedding_dist)
        else:
            diff_norm = np.linalg.norm(embedding_diff, axis=2)

        mask = diff_norm > np.finfo(diff_norm.dtype).eps * 100
        embedding_diff[mask] /= diff_norm[mask][:, np.newaxis]

        forces = cls.squareform(forces)

        if weights is not None:
            # multiply in the instance weights
            forces *= cls.row_v(weights)
            forces *= cls.col_v(weights)

        # multiply unit direction vectors with the force magnitude
        F = embedding_diff * forces[:, :, np.newaxis]
        assert F.shape == (N, N, dim)
        # sum all the forces acting on a particle
        F = np.sum(F, axis=0)
        assert F.shape == (N, dim)
        # Transfer forces to the 'anchors'
        # (P, dim) array of gradients
        G = X.T.dot(F)
        assert G.shape == (P, dim)
        return G

    @classmethod
    def freeviz_gradient(cls,
                         X,
                         y,
                         embedding,
                         p=1,
                         weights=None,
                         is_class_discrete=False):
        """
        Return the gradient for the FreeViz [1]_ projection.

        Parameters
        ----------
        X : (N, P) ndarray
            The data instance coordinates
        y : (N,) ndarray
            The instance target/class values
        embedding : (N, dim) ndarray
            The current FreeViz point embeddings.
        p : positive number
            The force 'power', e.g. if p=1 (default) the attractive/repulsive
            forces follow linear/inverse linear law, for p=2 the forces follow
            square/inverse square law, ...
        weights : (N, ) ndarray, optional
            Optional vector of sample weights.

        Returns
        -------
        G : (P, dim) ndarray
            The projection gradient.

        .. [1] Janez Demsar, Gregor Leban, Blaz Zupan
               FreeViz - An Intelligent Visualization Approach for Class-Labeled
               Multidimensional Data Sets, Proceedings of IDAMAP 2005, Edinburgh.
        """
        X = np.asarray(X)
        y = np.asarray(y)
        embedding = np.asarray(embedding)
        assert X.ndim == 2 and X.shape[0] == y.shape[0] == embedding.shape[0]
        D = scipy.spatial.distance.pdist(embedding)
        if is_class_discrete:
            forces = cls.forces_classification(D, y, p=p)
        else:
            forces = cls.forces_regression(D, y, p=p)
        G = cls.gradient(X,
                         embedding,
                         forces,
                         embedding_dist=D,
                         weights=weights)
        return G

    @classmethod
    def _rotate(cls, A):
        """
        Rotate a 2D projection A so the first axis (row in A) is aligned with
        vector (1, 0).
        """
        assert A.ndim == 2 and A.shape[1] == 2
        phi = np.arctan2(A[0, 1], A[0, 0])
        R = [[np.cos(-phi), np.sin(-phi)], [-np.sin(-phi), np.cos(-phi)]]
        return np.dot(A, R)

    @classmethod
    def freeviz(cls,
                X,
                y,
                weights=None,
                center=True,
                scale=True,
                dim=2,
                p=1,
                initial=None,
                maxiter=500,
                alpha=0.1,
                atol=1e-5,
                is_class_discrete=False):
        """
        FreeViz

        Compute a linear lower dimensional projection to optimize separation
        between classes ([1]_).

        Parameters
        ----------
        X : (N, P) ndarray
            The input data instances
        y : (N, ) ndarray
            The instance class labels
        weights : (N, ) ndarray, optional
            Instance weights
        center : bool or (P,) ndarray
            If `True` then X will have mean subtracted out, if False no
            centering is performed. Alternatively can be a P vector to subtract
            from X.
        scale : bool or (P,) ndarray
            If `True` the X's column will be scaled by 1/SD, if False no scaling
            is performed. Alternatively can be a P vector to divide X by.
        dim : int
            The dimension of the projected points/embedding.
        p : positive number
            The force 'power', e.g. if p=1 (default) the attractive/repulsive
            forces follow linear/inverse linear law, for p=2 the forces follow
            square/inverse square law, ...
        initial : (P, dim) ndarray, optional
            Initial projection matrix
        maxiter : int
            Maximum number of iterations.
        alpha : float
            The step size ('learning rate')
        atol : float
            Terminating numerical tolerance (absolute).

        Returns
        -------
        embeddings : (N, dim) ndarray
            The point projections (`= X.dot(P)`)
        projection : (P, dim)
            The projection matrix.
        center : (P,) ndarray or None
            The translation applied to X (if any).
        scale : (P,) ndarray or None
            The scaling applied to X (if any).

        .. [1] Janez Demsar, Gregor Leban, Blaz Zupan
               FreeViz - An Intelligent Visualization Approach for Class-Labeled
               Multidimensional Data Sets, Proceedings of IDAMAP 2005, Edinburgh.
        """
        needcopy = center is not False or scale is not False
        X = np.array(X, copy=needcopy)
        y = np.asarray(y)
        N, P = X.shape
        _N, = y.shape
        if N != _N:
            raise ValueError("X and y must have the same length")

        if weights is not None:
            weights = np.asarray(weights)

        if isinstance(center, bool):
            if center:
                center = np.mean(X, axis=0)
            else:
                center = None
        else:
            center = np.asarray(center, dtype=X.dtype)
            if center.shape != (P, ):
                raise ValueError(
                    "center.shape != (X.shape[1], ) ({} != {})".format(
                        center.shape, (X.shape[1], )))

        if isinstance(scale, bool):
            if scale:
                scale = np.std(X, axis=0)
            else:
                scale = None
        else:
            scale = np.asarray(scale, dtype=X.dtype)
            if scale.shape != (P, ):
                raise ValueError(
                    "scale.shape != (X.shape[1],) ({} != {}))".format(
                        scale.shape, (P, )))

        if initial is not None:
            initial = np.asarray(initial)
            if initial.ndim != 2 or initial.shape != (P, dim):
                raise ValueError
        else:
            initial = cls.init_random(P, dim)
            # initial = np.random.random((P, dim)) * 2 - 1

        # Center/scale X if requested
        if center is not None:
            X -= center

        if scale is not None:
            scalenonzero = np.abs(scale) > np.finfo(scale.dtype).eps
            X[:, scalenonzero] /= scale[scalenonzero]

        A = initial
        embeddings = np.dot(X, A)

        step_i = 0
        while step_i < maxiter:
            G = cls.freeviz_gradient(X,
                                     y,
                                     embeddings,
                                     p=p,
                                     weights=weights,
                                     is_class_discrete=is_class_discrete)

            # Scale the changes (the largest anchor move is alpha * radius)
            with np.errstate(divide="ignore"):  # inf's will be ignored by min
                step = np.min(
                    np.linalg.norm(A, axis=1) / np.linalg.norm(G, axis=1))
                if not np.isfinite(step):
                    break
            step = alpha * step
            Anew = A - step * G

            # Center anchors (?? This does not seem right; it changes the
            # projection axes direction somewhat arbitrarily)
            Anew = Anew - np.mean(Anew, axis=0)

            # Scale (so that the largest radius is 1)
            maxr = np.max(np.linalg.norm(Anew, axis=1))
            if maxr >= 0.001:
                Anew /= maxr

            change = np.linalg.norm(Anew - A, axis=1)
            if cls.allclose(change, 0, atol=atol):
                break

            A = Anew
            embeddings = np.dot(X, A)
            step_i = step_i + 1

        if dim == 2:
            A = cls._rotate(A)

        return embeddings, A, center, scale

    @staticmethod
    def init_radial(p):
        """
        Return a 2D projection with a circular anchor placement.
        """
        assert p > 0
        if p == 1:
            axes_angle = [0]
        elif p == 2:
            axes_angle = [0, np.pi / 2]
        else:
            axes_angle = np.linspace(0, 2 * np.pi, p, endpoint=False)

        A = np.c_[np.cos(axes_angle), np.sin(axes_angle)]
        return A

    @staticmethod
    def init_random(p, dim, rstate=None):
        if not isinstance(rstate, np.random.RandomState):
            rstate = np.random.RandomState(rstate if rstate is not None else 0)
        return rstate.rand(p, dim) * 2 - 1