def test_set_preprocessor(self): """ Test preprocessor set """ w = self.widget preprocessor = Continuize() # check if empty self.assertIn(w.preprocessors, [[], None]) self.send_signal(w.Inputs.preprocessor, preprocessor) # check preprocessor is set self.assertEqual(w.preprocessors, [preprocessor]) self.assertIn(preprocessor, self.get_output(w.Outputs.learner).preprocessors) # remove preprocessor self.send_signal(w.Inputs.preprocessor, None) self.assertIn(w.preprocessors, [[], None]) self.assertNotIn(preprocessor, self.get_output(w.Outputs.learner).preprocessors) # change preprocessor preprocessor = Continuize() self.send_signal(w.Inputs.preprocessor, preprocessor) # check preprocessor is set self.assertEqual(w.preprocessors, [preprocessor]) self.assertIn(preprocessor, self.get_output(w.Outputs.learner).preprocessors)
class RadViz(LinearProjector): name = "RadViz" supports_sparse = False preprocessors = [RemoveNaNRows(), Continuize(multinomial_treatment=Continuize.FirstAsBase), Normalize(norm_type=Normalize.NormalizeBySpan)] projection = RadVizModel def __call__(self, data): if data is not None: if len([attr for attr in data.domain.attributes if attr.is_discrete and len(attr.values) > 2]): raise ValueError("Can not handle categorical variables" " with more than two values") return super().__call__(data) def get_components(self, X, Y): return np.array([ (np.cos(t), np.sin(t)) for t in [2.0 * np.pi * (i / X.shape[1]) for i in range(X.shape[1])]]).T def transform(self, X): table = np.zeros((X.shape[0], 2)) for i in range(X.shape[0]): row = np.repeat(np.expand_dims(X[i], axis=1), 2, axis=1) with np.errstate(divide='ignore', invalid='ignore'): s = X[i].sum() table[i] = np.divide((self.components_.T * row).sum(axis=0), s, where=s != 0) return table
def _design_matrix(self, data): """ Create a design matrix with Continuized variables and a bias term. Can contain both meta and class variables. """ assert len(self.batch_vars) > 0 df = data[:, self.batch_vars] dom = df.domain.metas + df.domain.class_vars X = np.hstack((df.metas, df.Y.reshape((len(data), len(df.domain.class_vars))))) Z = Continuize()(Table.from_numpy(domain=Domain(attributes=dom), X=X)).X return np.hstack((np.ones((len(df), 1)), Z))
def test_set_preprocessor(self): """ Test preprocessor set """ w = self.widget preprocessor = Continuize() # check if empty self.assertIn(w.preprocessors, [[], None]) self.send_signal("Preprocessor", preprocessor) # check preprocessor is set self.assertEqual(w.preprocessors, [preprocessor]) self.assertIn(preprocessor, self.get_output("Learner").preprocessors) # remove preprocessor self.send_signal("Preprocessor", None) self.assertIn(w.preprocessors, [[], None]) self.assertNotIn(preprocessor, self.get_output("Learner").preprocessors) # set it again preprocessor = Discretize() self.send_signal("Preprocessor", preprocessor) # check preprocessor is set self.assertEqual(w.preprocessors, [preprocessor]) self.assertIn(preprocessor, self.get_output("Learner").preprocessors) # change preprocessor preprocessor = Continuize() self.send_signal("Preprocessor", preprocessor) # check preprocessor is set self.assertEqual(w.preprocessors, [preprocessor]) self.assertIn(preprocessor, self.get_output("Learner").preprocessors)
def test_continuize_pickling(self): c = Continuize(multinomial_treatment=Continuize.FirstAsBase) s = pickle.dumps(c, -1) c1 = pickle.loads(s) self.assertIs(c1.multinomial_treatment, c.multinomial_treatment)
class FreeViz(LinearProjector): name = 'FreeViz' supports_sparse = False preprocessors = [ RemoveNaNRows(), Continuize(multinomial_treatment=Continuize.FirstAsBase), Scale(scale=Scale.Span) ] projection = FreeVizModel def __init__(self, weights=None, center=True, scale=True, dim=2, p=1, initial=None, maxiter=500, alpha=0.1, atol=1e-5, preprocessors=None): super().__init__(preprocessors=preprocessors) self.weights = weights self.center = center self.scale = scale self.dim = dim self.p = p self.initial = initial self.maxiter = maxiter self.alpha = alpha self.atol = atol self.is_class_discrete = False self.components_ = None def __call__(self, data): if data is not None: self.is_class_discrete = data.domain.class_var.is_discrete if len([ attr for attr in data.domain.attributes if attr.is_discrete and len(attr.values) > 2 ]): raise ValueError("Can not handle discrete variables" " with more than two values") return super().__call__(data) def get_components(self, X, Y): return self.freeviz(X, Y, weights=self.weights, center=self.center, scale=self.scale, dim=self.dim, p=self.p, initial=self.initial, maxiter=self.maxiter, alpha=self.alpha, atol=self.atol, is_class_discrete=self.is_class_discrete)[1].T @classmethod def squareform(cls, d): """ Parameters ---------- d : (N * (N - 1) // 2, ) ndarray A hollow symmetric square array in condensed form Returns ------- D : (N, N) ndarray A symmetric square array in redundant form. See also -------- scipy.spatial.distance.squareform """ assert d.ndim == 1 return scipy.spatial.distance.squareform(d, checks=False) @classmethod def row_v(cls, a): """ Return a view of `a` as a row vector. """ return a.reshape((1, -1)) @classmethod def col_v(cls, a): """ Return a view of `a` as a column vector. """ return a.reshape((-1, 1)) @classmethod def allclose(cls, a, b, rtol=1e-5, atol=1e-8, equal_nan=False): # same as np.allclose in numpy==1.10 return np.all(np.isclose(a, b, rtol, atol, equal_nan=equal_nan)) @classmethod def forces_regression(cls, distances, y, p=1): y = np.asarray(y) ydist = scipy.spatial.distance.pdist(y.reshape(-1, 1), "sqeuclidean") mask = distances > np.finfo(distances.dtype).eps * 100 F = ydist if p == 1: F[mask] /= distances[mask] else: F[mask] /= distances[mask]**p return F @classmethod def forces_classification(cls, distances, y, p=1): diffclass = scipy.spatial.distance.pdist(y.reshape(-1, 1), "hamming") != 0 # handle attractive force if p == 1: F = -distances else: F = -(distances**p) # handle repulsive force mask = (diffclass & (distances > np.finfo(distances.dtype).eps * 100)) assert mask.shape == F.shape and mask.dtype == bool if p == 1: F[mask] = 1 / distances[mask] else: F[mask] = 1 / (distances[mask]**p) return F @classmethod def gradient(cls, X, embeddings, forces, embedding_dist=None, weights=None): X = np.asarray(X) embeddings = np.asarray(embeddings) if weights is not None: weights = np.asarray(weights) if weights.ndim != 1: raise ValueError("weights.ndim != 1 ({})".format(weights.ndim)) N, P = X.shape _, dim = embeddings.shape if not N == embeddings.shape[0]: raise ValueError( "X and embeddings must have the same length ({}!={})".format( X.shape[0], embeddings.shape[0])) if weights is not None and X.shape[0] != weights.shape[0]: raise ValueError("X.shape[0] != weights.shape[0] ({}!={})".format( X.shape[0], weights.shape[0])) # all pairwise vector differences between embeddings embedding_diff = (embeddings[:, np.newaxis, :] - embeddings[np.newaxis, :, :]) assert embedding_diff.shape == (N, N, dim) assert cls.allclose(embedding_diff[0, 1], embeddings[0] - embeddings[1]) assert cls.allclose(embedding_diff[1, 0], -embedding_diff[0, 1]) # normalize the direction vectors to unit direction vectors if embedding_dist is not None: # use supplied precomputed distances diff_norm = cls.squareform(embedding_dist) else: diff_norm = np.linalg.norm(embedding_diff, axis=2) mask = diff_norm > np.finfo(diff_norm.dtype).eps * 100 embedding_diff[mask] /= diff_norm[mask][:, np.newaxis] forces = cls.squareform(forces) if weights is not None: # multiply in the instance weights forces *= cls.row_v(weights) forces *= cls.col_v(weights) # multiply unit direction vectors with the force magnitude F = embedding_diff * forces[:, :, np.newaxis] assert F.shape == (N, N, dim) # sum all the forces acting on a particle F = np.sum(F, axis=0) assert F.shape == (N, dim) # Transfer forces to the 'anchors' # (P, dim) array of gradients G = X.T.dot(F) assert G.shape == (P, dim) return G @classmethod def freeviz_gradient(cls, X, y, embedding, p=1, weights=None, is_class_discrete=False): """ Return the gradient for the FreeViz [1]_ projection. Parameters ---------- X : (N, P) ndarray The data instance coordinates y : (N,) ndarray The instance target/class values embedding : (N, dim) ndarray The current FreeViz point embeddings. p : positive number The force 'power', e.g. if p=1 (default) the attractive/repulsive forces follow linear/inverse linear law, for p=2 the forces follow square/inverse square law, ... weights : (N, ) ndarray, optional Optional vector of sample weights. Returns ------- G : (P, dim) ndarray The projection gradient. .. [1] Janez Demsar, Gregor Leban, Blaz Zupan FreeViz - An Intelligent Visualization Approach for Class-Labeled Multidimensional Data Sets, Proceedings of IDAMAP 2005, Edinburgh. """ X = np.asarray(X) y = np.asarray(y) embedding = np.asarray(embedding) assert X.ndim == 2 and X.shape[0] == y.shape[0] == embedding.shape[0] D = scipy.spatial.distance.pdist(embedding) if is_class_discrete: forces = cls.forces_classification(D, y, p=p) else: forces = cls.forces_regression(D, y, p=p) G = cls.gradient(X, embedding, forces, embedding_dist=D, weights=weights) return G @classmethod def _rotate(cls, A): """ Rotate a 2D projection A so the first axis (row in A) is aligned with vector (1, 0). """ assert A.ndim == 2 and A.shape[1] == 2 phi = np.arctan2(A[0, 1], A[0, 0]) R = [[np.cos(-phi), np.sin(-phi)], [-np.sin(-phi), np.cos(-phi)]] return np.dot(A, R) @classmethod def freeviz(cls, X, y, weights=None, center=True, scale=True, dim=2, p=1, initial=None, maxiter=500, alpha=0.1, atol=1e-5, is_class_discrete=False): """ FreeViz Compute a linear lower dimensional projection to optimize separation between classes ([1]_). Parameters ---------- X : (N, P) ndarray The input data instances y : (N, ) ndarray The instance class labels weights : (N, ) ndarray, optional Instance weights center : bool or (P,) ndarray If `True` then X will have mean subtracted out, if False no centering is performed. Alternatively can be a P vector to subtract from X. scale : bool or (P,) ndarray If `True` the X's column will be scaled by 1/SD, if False no scaling is performed. Alternatively can be a P vector to divide X by. dim : int The dimension of the projected points/embedding. p : positive number The force 'power', e.g. if p=1 (default) the attractive/repulsive forces follow linear/inverse linear law, for p=2 the forces follow square/inverse square law, ... initial : (P, dim) ndarray, optional Initial projection matrix maxiter : int Maximum number of iterations. alpha : float The step size ('learning rate') atol : float Terminating numerical tolerance (absolute). Returns ------- embeddings : (N, dim) ndarray The point projections (`= X.dot(P)`) projection : (P, dim) The projection matrix. center : (P,) ndarray or None The translation applied to X (if any). scale : (P,) ndarray or None The scaling applied to X (if any). .. [1] Janez Demsar, Gregor Leban, Blaz Zupan FreeViz - An Intelligent Visualization Approach for Class-Labeled Multidimensional Data Sets, Proceedings of IDAMAP 2005, Edinburgh. """ needcopy = center is not False or scale is not False X = np.array(X, copy=needcopy) y = np.asarray(y) N, P = X.shape _N, = y.shape if N != _N: raise ValueError("X and y must have the same length") if weights is not None: weights = np.asarray(weights) if isinstance(center, bool): if center: center = np.mean(X, axis=0) else: center = None else: center = np.asarray(center, dtype=X.dtype) if center.shape != (P, ): raise ValueError( "center.shape != (X.shape[1], ) ({} != {})".format( center.shape, (X.shape[1], ))) if isinstance(scale, bool): if scale: scale = np.std(X, axis=0) else: scale = None else: scale = np.asarray(scale, dtype=X.dtype) if scale.shape != (P, ): raise ValueError( "scale.shape != (X.shape[1],) ({} != {}))".format( scale.shape, (P, ))) if initial is not None: initial = np.asarray(initial) if initial.ndim != 2 or initial.shape != (P, dim): raise ValueError else: initial = cls.init_random(P, dim) # initial = np.random.random((P, dim)) * 2 - 1 # Center/scale X if requested if center is not None: X -= center if scale is not None: scalenonzero = np.abs(scale) > np.finfo(scale.dtype).eps X[:, scalenonzero] /= scale[scalenonzero] A = initial embeddings = np.dot(X, A) step_i = 0 while step_i < maxiter: G = cls.freeviz_gradient(X, y, embeddings, p=p, weights=weights, is_class_discrete=is_class_discrete) # Scale the changes (the largest anchor move is alpha * radius) with np.errstate(divide="ignore"): # inf's will be ignored by min step = np.min( np.linalg.norm(A, axis=1) / np.linalg.norm(G, axis=1)) if not np.isfinite(step): break step = alpha * step Anew = A - step * G # Center anchors (?? This does not seem right; it changes the # projection axes direction somewhat arbitrarily) Anew = Anew - np.mean(Anew, axis=0) # Scale (so that the largest radius is 1) maxr = np.max(np.linalg.norm(Anew, axis=1)) if maxr >= 0.001: Anew /= maxr change = np.linalg.norm(Anew - A, axis=1) if cls.allclose(change, 0, atol=atol): break A = Anew embeddings = np.dot(X, A) step_i = step_i + 1 if dim == 2: A = cls._rotate(A) return embeddings, A, center, scale @staticmethod def init_radial(p): """ Return a 2D projection with a circular anchor placement. """ assert p > 0 if p == 1: axes_angle = [0] elif p == 2: axes_angle = [0, np.pi / 2] else: axes_angle = np.linspace(0, 2 * np.pi, p, endpoint=False) A = np.c_[np.cos(axes_angle), np.sin(axes_angle)] return A @staticmethod def init_random(p, dim, rstate=None): if not isinstance(rstate, np.random.RandomState): rstate = np.random.RandomState(rstate if rstate is not None else 0) return rstate.rand(p, dim) * 2 - 1