from data_utils import cast_table from Orange.regression.earth import EarthLearner import attr_lists if globals().get('in_data'): out_data = cast_table(in_data, attr_selector=) out_classifier = EarthLearner(out_data, degree=1, terms=30, penalty=1.0, thresh=0.001, min_span=0, new_var_penalty=1, fast_k=20, fast_beta=1, store_instances=False) out_classifier.name = 'rv_Earth'
import Orange from Orange import orange from Orange.regression.earth import EarthLearner attrs = [attribute.name for attribute in in_data.domain.attributes if attribute.name.startswith('d_') and str(attribute.var_type) == 'Continuous'] rel_attrs = [] for attr in attrs: attr_name = 'w_per_' + attr rel_attrs.append(orange.FloatVariable(attr_name, getValueFrom=lambda i, r, n=attr: (i[n] and i[n] > 0.0 and i['d_word_count'] / i[n]) or 0.0)) new_domain = Orange.data.Domain(rel_attrs, in_data.domain.class_var) new_domain.addmetas(in_data.domain.getmetas()) out_data = orange.ExampleTable(new_domain, in_data) out_classifier = EarthLearner(out_data, degree=1, terms=30, penalty=1.0, thresh=0.001, min_span=0, new_var_penalty=1, fast_k=20, fast_beta=1, store_instances=False) out_classifier.name = 'rel_d_Earth'