コード例 #1
0
def _quantize(t: Image, palette) -> Image:
    with Image.new('P', (1, 1)) as palette_img:
        p = [x for sub in palette for x in sub] + [0] * (768 - 3 * len(palette))
        palette_img.putpalette(p)
        palette_img.load()
        im = t.im.convert('P', 0, palette_img.im)
        return t._new(im).convert('RGB')
コード例 #2
0
def _quantize(t: Image, palette) -> Image:
    with Image.new('P', (1, 1)) as palette_img:
        # Flatten 2d array to 1d, then pad with first color to 786 total values
        p = [v for color in palette
             for v in color] + list(palette[0]) * (256 - len(palette))
        palette_img.putpalette(p)
        palette_img.load()
        im = t.im.convert(
            'P', 0, palette_img.im
        )  # Quantize using internal PIL shit so it's not dithered
        return t._new(im).convert('RGB')
コード例 #3
0
def recolor(img: Image, alpha: bool, **options):
    # Alpha channel take 1 color
    # QUANTIZE with kmeans != 0
    # FOR ALPHA IS MANDATORY 2 (3depends on a lib)
    colors_count = options["colors"][
        "colors"] if not alpha else options["colors"]["colors"] - 1
    result = img.quantize(colors=colors_count, method=2, kmeans=0)
    if options["dither"] and options["colors"]["mode"] is not "LA":
        # utilizing underlying imaging core C library directly
        # maybe implementing custom algorithm would be better
        # also reorganizing the chain of operations for recoloring
        # (by better understanding different parts at work and properly chaining them)
        dithered = img._new(
            img.im.convert(options["colors"]["mode"], Image.FLOYDSTEINBERG,
                           result.im))
        dithered = dithered.quantize(colors=colors_count)
        return dithered
    result = result.convert(mode=options["colors"]["mode"],
                            palette=Image.ADAPTIVE,
                            colors=colors_count)
    return result