コード例 #1
0
ファイル: Chest_disp.py プロジェクト: giguerefrancoisx/PMG
from PMG.COM.openbook import openHDF5
import PMG.COM.data as data
from PMG.COM.data import check_and_clean
import PMG.COM.plotstyle as style
import PMG.COM.table as tb

THOR = os.fspath('P:/AHEC/Data/THOR/')
chlist = ['11CHSTLEUPTHDSXB', '11CHSTRIUPTHDSXB', '11CHSTRILOTHDSXB', '11CHSTLELOTHDSXB']

time, fulldata = openHDF5(THOR, chlist)

for ch in chlist:
    print(ch)
    fulldata[ch] = check_and_clean(fulldata[ch],1)

table = tb.get('THOR')
table = table[table.TYPE.isin(['Frontale/Véhicule']) & table.VITESSE.isin([48,56])]
ok, slip = tb.tcns(tb.split(table, column='CBL_BELT', categories=['OK','SLIP']))

#%%
if 0:
    cd = style.colordict(chlist)
    titles = dict(zip(chlist, ['Upper Left', 'Upper Right', 'Lower Right', 'Lower Left']))

    plt.close('all')
    r, c = 2, 2
    fig, axs = style.subplots(r, c, sharex='all', sharey='all')
    ok_df = pd.DataFrame()
    slip_df = pd.DataFrame()
    for i, ch in enumerate(chlist):
        ax=axs[i]
コード例 #2
0
ファイル: animation.py プロジェクト: giguerefrancoisx/PMG
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 19 11:14:43 2018

@author: giguerf
"""

import matplotlib.pyplot as plt
from PMG.COM.openbook import openHDF5
from PMG.COM import table as tb
from matplotlib.animation import FuncAnimation
from matplotlib.widgets import Slider
import matplotlib.gridspec as gridspec

table = tb.get('SLED')

SLED = 'P:/SLED/Data/'
chlist = [
    '12HEAD0000Y7ACXA', '12HEAD0000Y2ACXA', '12CHST0000Y7ACXC',
    '12CHST0000Y2ACXC', '12PELV0000Y7ACXA', '12PELV0000Y2ACXA'
]

time, fulldata = openHDF5(SLED, chlist)

raw = fulldata['12PELV0000Y7ACXA'].iloc[:, 0]

#%% Animation
fig, ax = plt.subplots(figsize=(5, 3))
#ax.set(xlim=(-3, 3), ylim=(-1, 1))
ax.plot(raw, 'k')
コード例 #3
0
def plotbook(savedir, chlist, tcns=None):
    """
    Plot THOR-related basic overview plots. All pairs by channels and both
    groups with means/intervals by channels.
    """
    import pandas as pd
    import matplotlib.pyplot as plt
    from PMG.COM import plotstyle as style, data, table as tb

    descriptions = pd.read_excel('P:/AHEC/Descriptions.xlsx', index_col=0)
    description = descriptions.to_dict()[descriptions.columns[0]]

    time, fulldata = data.import_data('P:/AHEC/DATA/THOR/',
                                      chlist,
                                      tcns,
                                      check=False)
    #    for k,v in fulldata.items():
    #        fulldata[k] = data.check_and_clean(v, stage=2)

    table = tb.get('THOR')
    table = table[table.CIBLE.isin(tcns)]
    slips = table[table.CBL_BELT.isin(['SLIP'])].CIBLE.tolist()
    oks = table[table.CBL_BELT.isin(['OK'])].CIBLE.tolist()
    table = table[table.CIBLE.isin(slips + oks)]

    #%% FIGURE 1 - all pairs plotted individually

    xlim = (0, 0.3)
    xlabel = 'Time [s]'

    plt.close('all')
    for channel in chlist:
        slipdf = fulldata[channel].loc[:, slips]
        okdf = fulldata[channel].loc[:, oks]
        plotdata = pd.concat([slipdf, okdf], axis=1)

        if plotdata.empty:
            continue

        ylabel = style.ylabel(channel[12:14], channel[14:15])

        r, c = style.sqfactors(len(plotdata.columns.tolist()))
        fig, axs = style.subplots(r,
                                  c,
                                  sharex='all',
                                  sharey='all',
                                  visible=True,
                                  num='All Pairs: ' + channel)
        fig.suptitle('{ch} - {desc}'.format(ch=channel,
                                            desc=description.get(
                                                channel,
                                                'Description Unavailable')))

        for i, tcn in enumerate(table.CIBLE):
            ax = axs[i]
            ax.plot(time, plotdata.loc[:, tcn], color='tab:green', label=tcn)
            ax.set_xlim(*xlim)

            title = ' '.join(
                [tcn, table[table.CIBLE == tcn].CBL_MODELE.tolist()[0]])
            ax.set_title(title)
            ax.set_ylabel(ylabel)
            ax.set_xlabel(xlabel)
            ax.legend(loc=4)

        plt.tight_layout(rect=[0, 0, 1, 0.92])
        plt.savefig(savedir + 'All_Pairs_' + channel + '.png', dpi=200)
        plt.close('all')

    #%% FIGURE 2 - Vehicle groups and means

    plt.close('all')
    for channel in chlist:

        slipdf = fulldata[channel].loc[:, slips]
        okdf = fulldata[channel].loc[:, oks]

        ylabel = style.ylabel(channel[12:14], channel[14:15])

        fig, axs = style.subplots(2,
                                  2,
                                  sharex='all',
                                  sharey='all',
                                  num='Belt: ' + channel,
                                  figsize=(20, 12.5))
        fig.suptitle('{ch} - {desc}'.format(ch=channel,
                                            desc=description.get(
                                                channel,
                                                'Description Unavailable')))

        #FIRST SUBPLOT - 'SLIP' Group full data set
        ax = axs[0]
        ax.plot(time,
                slipdf,
                lw=1,
                color='tab:blue',
                label='n = {}'.format(slipdf.shape[1]))
        ax.set_title('Slipping Belts')
        ax.set_ylabel(ylabel)
        ax.set_xlabel(xlabel)
        style.legend(ax, loc=4)

        #THIRD SUBPLOT - 'OK' Group full data set
        ax = axs[2]
        ax.plot(time,
                okdf,
                lw=1,
                color='tab:orange',
                label='n = {}'.format(okdf.shape[1]))
        ax.set_title('Ok Belts')
        ax.set_ylabel(ylabel)
        ax.set_xlabel(xlabel)
        style.legend(ax, loc=4)

        #SECOND SUBPLOT - 'CIBLE' vs 'BELIER' Groups (median and intervals)
        ax = axs[1]
        data.tolerance(ax, time, slipdf, 'tab:blue')
        data.tolerance(ax, time, okdf, 'tab:orange')

        ax.set_title('All Belts (Mean and Intervals)')
        ax.set_ylabel(ylabel)
        ax.set_xlabel(xlabel)
        ax.legend(loc=4)

        ax.set_xlim(*xlim)
        #%%
        plt.subplots_adjust(top=0.893,
                            bottom=0.060,
                            left=0.048,
                            right=0.974,
                            hspace=0.222,
                            wspace=0.128)
        plt.savefig(savedir + 'Belt_' + channel + '.png', dpi=200)
        plt.close('all')
コード例 #4
0
ファイル: clustering.py プロジェクト: giguerefrancoisx/PMG
        ax.plot(t, raw)
        ax2 = plt.twinx(ax=ax)
        ax2.plot(t, df, ':')

    return clusters, df


### Run the main function unless imported
if __name__ == '__main__':
    from PMG.COM import table as tb

    path = os.fspath('P:/AHEC/DATA/Full Sample/48/')
    project = 'AHEC'
    plot_path = 'P:/AHEC/Plots/Clustering/THOR/'

    table = tb.get(project)
    tcns = table[table.SUBSET.isin(['HEV vs ICE'])
                 & table.VITESSE.isin([48])].CIBLE.tolist() + table[
                     table.SUBSET.isin(['HEV vs ICE'])
                     & table.VITESSE.isin([48])].BELIER.tolist()
    #    tcns = None

    time, raw = import_data(path,
                            '10CVEHCG0000ACXD',
                            tcns,
                            sl=slice(100, 1600))
    labels = make_labels(raw, project)

    clusters, data = cluster(time,
                             raw,
                             labels,
コード例 #5
0
import pandas as pd
import matplotlib.pyplot as plt
#from PMG.COM.openbook import openHDF5
import PMG.COM.plotstyle as style
import PMG.COM.table as tb

#THOR = os.fspath('P:/AHEC/Data/THOR/')
chlist = [
    '11NECKLO00THFOXA', '11CHSTLEUPTHDSXB', '11PELV0000THACXA',
    '11FEMRLE00THFOZB'
]
#chlist = ['11CHST0000THACXC', '11CHSTLEUPTHDSXB', '11CLAVLEINTHFOZA', '11CLAVRIINTHFOZA']

time, fulldata = openHDF5(THOR, chlist)

ok, slip = tb.split(tb.get('THOR'), 'CBL_BELT', ['OK', 'SLIP']).values()
slip = slip[~slip.T1.isnull() & ~slip.T1.isin(['?'])]

bin1 = slip[(0.060 <= slip.T1) & (slip.T1 < 0.075)]
#bin2 = slip[(0.075<=slip.T1) & (slip.T1<0.090)]
#bin3 = slip[(0.090<=slip.T1) & (slip.T1<0.115)]
#%%
ok, slip = tb.split(table, 'CBL_BELT', ['OK', 'SLIP']).values()
slip = slip[~slip.T1.isnull() & ~slip.T1.isin(['?'])]
bin1 = slip[(0.060 <= slip.T1) & (slip.T1 < 0.075)]

r, c = 2, 2
plt.close('all')
fig, axs = style.subplots(r, c, sharex='all', sharey='col', figsize=(6.5, 6.5))

ind = pd.concat([time, pd.Series(time.index)], axis=1).set_index('Time')