コード例 #1
0
 def upgrade_to_ver_1(parameters):
     parameters['internal_buffers'] = []
     parameters['output_min'] = SharedArray.SharedNumpyArray_like(
         parameters['output_block'])
     parameters['output_max'] = SharedArray.SharedNumpyArray_like(
         parameters['output_block'])
     for (block, delta, pred_block,
          pred_block2) in parameters['signal_blocks']:
         block01 = SharedArray.SharedNumpyArray_like(block)
         block02 = SharedArray.SharedNumpyArray_like(block)
         block03 = SharedArray.SharedNumpyArray_like(block)
         parameters['internal_buffers'].append((block01, block02, block03))
コード例 #2
0
def upgrade_dictionary_to_ver1_0(simulation_dict):
    upgrade(simulation_dict)
    if "version_major" not in simulation_dict.keys(
    ) or simulation_dict["version_major"] < 1:
        logging.info(
            "Simulation dictionary of the old type, automatically upgrading to ver 1.0"
        )
        if 'learning_rates' not in simulation_dict.keys():
            simulation_dict['learning_rates'] = []
        if 'momenta' not in simulation_dict.keys():
            simulation_dict['momenta'] = []
        if 'taus' not in simulation_dict.keys():
            simulation_dict['taus'] = []
        if 'predicted_arrays' not in simulation_dict.keys():
            simulation_dict['predicted_arrays'] = []
        if 'predicted_arrays_t2' not in simulation_dict.keys():
            simulation_dict['predicted_arrays_t2'] = []
        if 'predicted_readout_arrays' not in simulation_dict.keys():
            simulation_dict['predicted_readout_arrays'] = []
        if 'readout_arrays' not in simulation_dict.keys():
            simulation_dict['readout_arrays'] = []
        if 'predicted_arrays' not in simulation_dict.keys():
            simulation_dict['predicted_arrays'] = []
        if 'state_arrays' not in simulation_dict.keys():
            simulation_dict['state_arrays'] = []
        if 'delta_arrays' not in simulation_dict.keys():
            simulation_dict['delta_arrays'] = []
        for i in range(PVM_MAX_LAYERS):  # max number of layers
            if "delta_array%02d" % i in simulation_dict.keys():
                simulation_dict['delta_arrays'].append(
                    simulation_dict['delta_array%02d' % i])
                del simulation_dict['delta_array%02d' % i]
            if "learning_rate%02d" % i in simulation_dict.keys():
                simulation_dict['learning_rates'].append(
                    simulation_dict['learning_rate%02d' % i])
                del simulation_dict['learning_rate%02d' % i]
            if "state_array%02d" % i in simulation_dict.keys():
                simulation_dict['state_arrays'].append(
                    simulation_dict['state_array%02d' % i])
                del simulation_dict['state_array%02d' % i]
            if "predicted_readout_array_float%02d" % i in simulation_dict.keys(
            ):
                simulation_dict['predicted_readout_arrays'].append(
                    simulation_dict['predicted_readout_array_float%02d' % i])
                del simulation_dict['predicted_readout_array_float%02d' % i]
            if "readout_array_float%02d" % i in simulation_dict.keys():
                simulation_dict['readout_arrays'].append(
                    simulation_dict['readout_array_float%02d' % i])
                del simulation_dict['readout_array_float%02d' % i]
            if "predicted_array%02d" % i in simulation_dict.keys():
                simulation_dict['predicted_arrays'].append(
                    simulation_dict['predicted_array%02d' % i])
                simulation_dict['predicted_arrays_t2'].append(
                    SharedArray.SharedNumpyArray_like(
                        simulation_dict['predicted_array%02d' % i]))
                del simulation_dict['predicted_array%02d' % i]

        if "motor_delta_array_float" in simulation_dict.keys():
            del simulation_dict["motor_delta_array_float"]
        if "readout_array_float" in simulation_dict.keys():
            del simulation_dict["readout_array_float"]
        if "readout_array_float" in simulation_dict.keys():
            del simulation_dict["readout_array_float"]
        if "predicted_motor_derivative_array_float" in simulation_dict.keys():
            del simulation_dict["predicted_motor_derivative_array_float"]
        if "predicted_readout_array_float" in simulation_dict.keys():
            del simulation_dict["predicted_readout_array_float"]
        if "additional_learning_rate" in simulation_dict.keys():
            simulation_dict["readout_learning_rate"] = simulation_dict[
                "additional_learning_rate"]
            del simulation_dict["additional_learning_rate"]
        elif "readout_learning_rate" not in simulation_dict.keys():
            simulation_dict[
                "readout_learning_rate"] = SharedArray.SharedNumpyArray(
                    (1, ), np.float)
            simulation_dict["readout_learning_rate"][:] = 0.00001

        simulation_dict['execution_unit_module'] += "_v1"
        if not simulation_dict['execution_unit_module'].startswith(
                "PVM_models"):
            simulation_dict[
                'execution_unit_module'] = "PVM_models." + simulation_dict[
                    'execution_unit_module']
        ex_unit = importlib.import_module(
            simulation_dict['execution_unit_module'])
        for s in range(simulation_dict['stages']):
            stage = simulation_dict['stage%d' % s]
            for unit in stage:
                signal_blocks = unit['signal_blocks']
                unit['signal_blocks'] = []
                for block in signal_blocks:
                    # Each block: signal_block, delta_block, prediction_t+1, prediction_t+2
                    unit['signal_blocks'].append([
                        block[0], block[1], block[2],
                        SharedArray.SharedNumpyArray_like(block[2])
                    ])
                context_blocks = unit['context_blocks']
                unit['context_blocks'] = []
                for block in context_blocks:
                    # Each block: context_block, delta_block, switching_factor
                    unit['context_blocks'].append(
                        [block[0], block[1], block[2]])
                readout_blocks = unit['predicted_blocks']
                del unit['predicted_blocks']
                unit['readout_blocks'] = []
                for block in readout_blocks:
                    # Each block: teaching_signal, delta_block, readout_block
                    unit['readout_blocks'].append(
                        [block[0], block[1], block[2]])
                # Delta blocks can remain unchanged
                if "learning_rate" in unit.keys():
                    unit['primary_learning_rate'] = unit.pop("learning_rate")
                if "momentum" in unit.keys():
                    unit['primary_momentum'] = unit.pop("momentum")
                    unit['readout_momentum'] = unit['primary_momentum']
                if "additional_learning_rate" in unit.keys():
                    unit['readout_learning_rate'] = unit.pop(
                        "additional_learning_rate")
                else:
                    unit['readout_learning_rate'] = simulation_dict[
                        "readout_learning_rate"]
                # Output block may remain unchanged
                if "MLP_parameters" in unit.keys():
                    unit['Primary_Predictor_params'] = unit.pop(
                        "MLP_parameters")
                if "MLP_parameters_res" in unit.keys():
                    unit['Residual_Predictor_params'] = unit.pop(
                        "MLP_parameters_res")
                if "MLP_parameters_additional" in unit.keys():
                    unit['Readout_Predictor_params'] = unit.pop(
                        "MLP_parameters_additional")
                unit['flags'] = simulation_dict['flags']
                ex_unit.ExecutionUnit.upgrade_to_ver_1(unit)

        simulation_dict['version_major'] = 1
        simulation_dict['version_minor'] = 0
        # Remove all the old source files
        simulation_dict['sources'] = {}
        logging.info("Upgrade succesfull")
    else:
        for s in range(simulation_dict['stages']):
            stage = simulation_dict['stage%d' % s]
            for unit in stage:
                unit['flags'] = simulation_dict['flags']
        logging.info("Dictionary already ver 1.0 or above, no need to upgrade")
コード例 #3
0
def generate_v1(name, description, options):
    input_block_size = int(options["input_block_size"])
    hidden_size = int(options["hidden_block_size"])
    layer_shape = map(lambda x: int(x), options["layer_shapes"])
    readout_block_size = map(lambda x: int(x), options["readout_block_size"])
    readout_layer = map(lambda x: x == "1", options["enable_readout"])
    lateral_radius = float(options["lateral_radius"])
    fan_in_square_size = int(options["fan_in_square_size"])
    fan_in_radius = int(options["fan_in_radius"])
    readout_depth = int(options["readout_depth"])
    ex_module = options["ex_module"]
    exclude_self = (options["context_exclude_self"] == '1')
    last_layer_context_to_all = (options["last_layer_context_to_all"] == '1')
    send_context_two_layers_back = (
        options["send_context_two_layers_back"] == '1')
    simulation_dict = create_blank_dictionary(
        name=name,
        description=description,
        save_sources=(options["save_source_files"] == '1'))
    simulation_dict['stages'] = 1
    simulation_dict['num_proc'] = 2 * mp.cpu_count() / 3
    simulation_dict['stage0'] = []
    simulation_dict['execution_unit_module'] = ex_module
    simulation_dict['version_major'] = 1
    simulation_dict['version_minor'] = 0
    unit = importlib.import_module(simulation_dict['execution_unit_module'])
    blocks_per_dim = layer_shape
    layers = len(blocks_per_dim)
    error_log = SharedArray.SharedNumpyArray((layers + 1, 1000000), np.float)
    simulation_dict['error_log'] = error_log

    simulation_dict['input_block_size'] = input_block_size
    simulation_dict['hidden_size'] = hidden_size
    simulation_dict['learning_rates'] = []
    simulation_dict['momenta'] = []
    simulation_dict['taus'] = []
    simulation_dict['predicted_arrays'] = []
    simulation_dict['predicted_arrays_t2'] = []
    simulation_dict['predicted_readout_arrays'] = []
    simulation_dict['readout_arrays'] = []
    simulation_dict['state_arrays'] = []
    simulation_dict['delta_arrays'] = []

    input_array = SharedArray.SharedNumpyArray(
        (input_block_size * blocks_per_dim[0],
         input_block_size * blocks_per_dim[0], 3), np.uint8)
    simulation_dict['input_array'] = input_array
    input_array_float = SharedArray.SharedNumpyArray(
        (input_block_size * blocks_per_dim[0],
         input_block_size * blocks_per_dim[0], 3), np.float)
    simulation_dict['input_array_float'] = input_array_float

    for (i, bpd) in enumerate(blocks_per_dim):
        if readout_layer[i]:
            readout_array_float00 = SharedArray.SharedNumpyArray(
                (bpd * readout_block_size[i], bpd * readout_block_size[i],
                 readout_depth), np.float)
            simulation_dict['readout_arrays'].append(readout_array_float00)
            predicted_readout_array_float00 = SharedArray.SharedNumpyArray(
                (bpd * readout_block_size[i], bpd * readout_block_size[i],
                 readout_depth), np.float)
            simulation_dict['predicted_readout_arrays'].append(
                predicted_readout_array_float00)

    # input array 0 is a special case, 3 dimensions because of color input
    predicted_array0 = SharedArray.SharedNumpyArray(
        (input_block_size * blocks_per_dim[0],
         input_block_size * blocks_per_dim[0], 3), np.float)
    simulation_dict['predicted_arrays'].append(predicted_array0)
    predicted_array2 = SharedArray.SharedNumpyArray(
        (input_block_size * blocks_per_dim[0],
         input_block_size * blocks_per_dim[0], 3), np.float)
    simulation_dict['predicted_arrays_t2'].append(predicted_array2)
    delta_array0 = SharedArray.SharedNumpyArray(
        (input_block_size * blocks_per_dim[0],
         input_block_size * blocks_per_dim[0], 3), np.float)
    simulation_dict['delta_arrays'].append(delta_array0)
    # All the rest is generic
    for (i, bpd) in enumerate(blocks_per_dim[:-1]):
        predicted_array1 = SharedArray.SharedNumpyArray(
            (hidden_size * bpd, hidden_size * bpd), np.float)
        simulation_dict['predicted_arrays'].append(predicted_array1)
        predicted_array2 = SharedArray.SharedNumpyArray(
            (hidden_size * bpd, hidden_size * bpd), np.float)
        simulation_dict['predicted_arrays_t2'].append(predicted_array2)
        delta_array1 = SharedArray.SharedNumpyArray(
            (hidden_size * bpd, hidden_size * bpd), np.float)
        simulation_dict['delta_arrays'].append(delta_array1)
    for (i, bpd) in enumerate(blocks_per_dim):
        state_array0 = SharedArray.SharedNumpyArray(
            (hidden_size * bpd, hidden_size * bpd), np.float)
        simulation_dict['state_arrays'].append(state_array0)

    # Base learning rate
    for (i, bpd) in enumerate(blocks_per_dim):
        learning_rate = SharedArray.SharedNumpyArray((1, ), np.float)
        learning_rate[0] = 0.0
        simulation_dict['learning_rates'].append(learning_rate)
    additional_learning_rate = SharedArray.SharedNumpyArray((1, ), np.float)
    additional_learning_rate[0] = 0.0
    simulation_dict['readout_learning_rate'] = additional_learning_rate
    # Momentum is the same everywhere.
    momentum = SharedArray.SharedNumpyArray((1, ), np.float)
    momentum[0] = float(options["momentum"])
    simulation_dict['momentum'] = momentum
    # Tau is the integration constant for the signal integral
    tau = SharedArray.SharedNumpyArray((1, ), np.float)
    tau[0] = float(options['tau'])
    simulation_dict['tau'] = tau
    context_factor_lateral = SharedArray.SharedNumpyArray((1, ), np.float)
    context_factor_lateral[0] = 0.0
    simulation_dict['context_factor_lateral'] = context_factor_lateral
    context_factor_feedback = SharedArray.SharedNumpyArray((1, ), np.float)
    context_factor_feedback[0] = 0.0
    simulation_dict['context_factor_feedback'] = context_factor_feedback
    base_index = [0]
    for bpd in blocks_per_dim:
        base_index.append(base_index[-1] + bpd * bpd)

    # Layer 0 is specific and has to be constructed separately
    for i in xrange(blocks_per_dim[0] * blocks_per_dim[0]):
        unit_parameters = create_basic_unit_v1(
            simulation_dict['learning_rates'][0], momentum, tau,
            additional_learning_rate)
        x = (i / blocks_per_dim[0]) * input_block_size
        y = (i % blocks_per_dim[0]) * input_block_size
        dx = input_block_size
        dy = input_block_size
        input_block = SharedArray.DynamicView(input_array_float)[x:x + dx,
                                                                 y:y + dy]
        predicted_block = SharedArray.DynamicView(
            simulation_dict['predicted_arrays'][0])[x:x + dx, y:y + dy]
        predicted_block_2 = SharedArray.DynamicView(
            simulation_dict['predicted_arrays_t2'][0])[x:x + dx, y:y + dy]
        delta_block = SharedArray.DynamicView(
            simulation_dict['delta_arrays'][0])[x:x + dx, y:y + dy]
        if not (predicted_block.shape == (dx, dy, 3)):
            print predicted_block.shape
            raise Exception("Block sizes don't agree")
        k = (i / blocks_per_dim[0]) * hidden_size
        l = (i % blocks_per_dim[0]) * hidden_size
        output_block = SharedArray.DynamicView(
            simulation_dict['state_arrays'][0])[k:k + hidden_size,
                                                l:l + hidden_size]
        unit_parameters['signal_blocks'].append(
            (input_block, delta_block, predicted_block, predicted_block_2))
        unit_parameters['output_block'] = output_block
        if readout_layer[0]:
            # Motor heatmap prediction
            layer = 0
            bpd = blocks_per_dim[layer]
            readout_teaching_block = SharedArray.DynamicView(
                simulation_dict['readout_arrays']
                [layer])[(i / bpd) * readout_block_size[0]:(i / bpd + 1) *
                         readout_block_size[0],
                         (i % bpd) * readout_block_size[0]:(i % bpd + 1) *
                         readout_block_size[0]]
            readout_delta_block = SharedArray.SharedNumpyArray_like(
                readout_teaching_block)
            predicted_readout_block = SharedArray.DynamicView(
                simulation_dict['predicted_readout_arrays']
                [layer])[(i / bpd) * readout_block_size[0]:(i / bpd + 1) *
                         readout_block_size[0],
                         (i % bpd) * readout_block_size[0]:(i % bpd + 1) *
                         readout_block_size[0]]
            unit_parameters['readout_blocks'] = [
                (readout_teaching_block, readout_delta_block,
                 predicted_readout_block)
            ]
            unit_parameters["layer"] = 0
            # End motor heatmap prediction
        simulation_dict['stage0'].append(unit_parameters)
    # Layer 0 surround
    gather_surround(simulation_dict, (base_index[0], blocks_per_dim[0]),
                    radius=lateral_radius,
                    context_factor=context_factor_lateral,
                    exclude_self=exclude_self)

    # The following layers are more generic
    for layer in range(1, layers):
        for i in xrange(blocks_per_dim[layer] * blocks_per_dim[layer]):
            unit_parameters = create_basic_unit_v1(
                simulation_dict['learning_rates'][layer], momentum, tau,
                additional_learning_rate)
            k = (i / blocks_per_dim[layer]) * hidden_size
            l = (i % blocks_per_dim[layer]) * hidden_size
            output_block = SharedArray.DynamicView(
                simulation_dict['state_arrays'][layer])[k:k + hidden_size,
                                                        l:l + hidden_size]
            unit_parameters['output_block'] = output_block
            if readout_layer[layer]:
                # Motor heatmap prediction
                bpd = blocks_per_dim[layer]
                readout_teaching_block = SharedArray.DynamicView(
                    simulation_dict['readout_arrays'][layer])[
                        (i / bpd) * readout_block_size[layer]:(i / bpd + 1) *
                        readout_block_size[layer],
                        (i % bpd) * readout_block_size[layer]:(i % bpd + 1) *
                        readout_block_size[layer]]
                readout_delta_block = SharedArray.SharedNumpyArray_like(
                    readout_teaching_block)
                predicted_readout_block = SharedArray.DynamicView(
                    simulation_dict['predicted_readout_arrays'][layer])[
                        (i / bpd) * readout_block_size[layer]:(i / bpd + 1) *
                        readout_block_size[layer],
                        (i % bpd) * readout_block_size[layer]:(i % bpd + 1) *
                        readout_block_size[layer]]
                unit_parameters['readout_blocks'] = [
                    (readout_teaching_block, readout_delta_block,
                     predicted_readout_block)
                ]
                unit_parameters["layer"] = layer
                # End motor heatmap prediction
            simulation_dict['stage0'].append(unit_parameters)
        # Connect to the previous layer
        connect_forward_and_back_v1(
            simulation_dict, (base_index[layer - 1], blocks_per_dim[layer - 1],
                              simulation_dict['predicted_arrays'][layer],
                              simulation_dict['predicted_arrays_t2'][layer]),
            (base_index[layer], blocks_per_dim[layer]),
            square_size=fan_in_square_size,
            radius=fan_in_radius,
            context_factor=context_factor_feedback)
        # Layer surround
        gather_surround(simulation_dict,
                        (base_index[layer], blocks_per_dim[layer]),
                        radius=lateral_radius,
                        context_factor=context_factor_lateral,
                        exclude_self=exclude_self)
        if send_context_two_layers_back and layer > 1:
            connect_back(simulation_dict,
                         (base_index[layer], blocks_per_dim[layer]),
                         (base_index[layer - 2], blocks_per_dim[layer - 2]),
                         square_size=2 * fan_in_square_size,
                         radius=2 * fan_in_radius,
                         context_factor=context_factor_feedback)

    # Add the global feedback from the top layer
    if last_layer_context_to_all:
        logging.info("Connecting last layer back to everyone")
        for to_idx in xrange(base_index[layers - 1]):
            for from_idx in range(base_index[layers - 1],
                                  len(simulation_dict["stage0"])):
                context_block = simulation_dict['stage0'][from_idx][
                    'output_block']
                delta_block2 = SharedArray.SharedNumpyArray_like(context_block)
                simulation_dict['stage0'][from_idx]['delta_blocks'].append(
                    delta_block2)
                # Connect the context block to the source
                simulation_dict['stage0'][to_idx]['context_blocks'].append(
                    (context_block, delta_block2, context_factor_feedback))

    simulation_dict['stage0_size'] = len(simulation_dict['stage0'])
    for i in range(simulation_dict['stage0_size']):
        simulation_dict['stage0'][i]['flags'] = simulation_dict['flags']
        unit.ExecutionUnit.generate_missing_parameters(
            simulation_dict['stage0'][i], options=options)
    return simulation_dict
コード例 #4
0
 for y in range(blocks_per_dim1):
     surround = get_fan_in((x, y),
                           dim_x_l=blocks_per_dim0,
                           dim_y_l=blocks_per_dim0,
                           dim_x_u=blocks_per_dim1,
                           dim_y_u=blocks_per_dim1,
                           block_x=square_size,
                           block_y=square_size,
                           radius=radius)
     dest = index1 + x * (blocks_per_dim1) + y  # destination unit
     for xy in surround:
         source = index0 + xy[0] * blocks_per_dim0 + xy[
             1]  # source unit
         # Prepare the input and corresponding delta block at source
         input_block = simulation_dict['stage0'][source]['output_block']
         delta_block = SharedArray.SharedNumpyArray_like(input_block)
         simulation_dict['stage0'][source]['delta_blocks'].append(
             delta_block)
         # Prepare the context and corresonding delta block at destination
         context_block = simulation_dict['stage0'][dest]['output_block']
         delta_block2 = SharedArray.SharedNumpyArray_like(context_block)
         simulation_dict['stage0'][dest]['delta_blocks'].append(
             delta_block2)
         # Connect the context block to the source
         simulation_dict['stage0'][source]['context_blocks'].append(
             (context_block, delta_block2, context_factor))
         # Prepare the predicted blocks
         xx = xy[0] * hidden_size
         yy = xy[1] * hidden_size
         assert (predicted_array[xx:xx + dx, yy:yy +
                                 dy].shape == context_block.shape)
コード例 #5
0
    def generate_missing_parameters(parameters, options):
        """
        This method can be called to generate all the missing dictionary parameters when all
        the other relevant variables are known. Leave empty if there is nothing more to generate.
        When complex_unit is False, a standard 3-layer MLP is used.
        When complex_unit is True, an MLP with additional hidden layers is used.

        There needs to be no return value, the method leaves a side effect by modifying the perameters dict.

        :param parameters: parameter dictionary
        :type parameters: dict
        """
        complex_unit = options['unit_type'] == "complex"
        polynomial = options['polynomial'] == '1'
        autoencoder = options['autoencoder'] == '1'

        nhidden = np.prod(parameters['output_block'].shape)
        parameters['output_min'] = SharedArray.SharedNumpyArray_like(
            parameters['output_block'])
        parameters['output_max'] = SharedArray.SharedNumpyArray_like(
            parameters['output_block'])
        ninputs = 0
        noutputs = 0
        ncontext = 0
        # Any additional memory buffers needed in the operation of the unit
        parameters['internal_buffers'] = []
        for (block, delta, pred_block,
             pred_block2) in parameters['signal_blocks']:
            block01 = SharedArray.SharedNumpyArray_like(block)
            block02 = SharedArray.SharedNumpyArray_like(block)
            block03 = SharedArray.SharedNumpyArray_like(block)
            parameters['internal_buffers'].append((block01, block02, block03))

        for (block, delta, pred_block,
             pred_block2) in parameters['signal_blocks']:
            ninputs += np.prod(block.shape) * len(
                ExecutionUnit.UNSUPERVISED_SIGNAL_INPUTS)
        for (block, delta, factor) in parameters['context_blocks']:
            ncontext += np.prod(block.shape)
        for (block, delta, pred_block,
             pred_block2) in parameters['signal_blocks']:
            noutputs += 2 * np.prod(
                block.shape)  # to predict two steps into the future
        nadditional = 0
        for (block, delta, pblock) in parameters['readout_blocks']:
            nadditional += np.prod(block.shape)
        parameters["Primary_Predictor_params"] = {}
        parameters["Residual_Predictor_params"] = {}
        parameters["Readout_Predictor_params"] = {}
        if complex_unit:  # 4 layer perceptron
            parameters["Primary_Predictor_params"]['layers'] = MLP.get_layers(
                [ncontext + 1, 3 * nhidden + 1, 2 * nhidden + 1, noutputs + 1])
            parameters["Residual_Predictor_params"]['layers'] = MLP.get_layers(
                [ninputs + 1, 2 * nhidden + 1, nhidden + 1, noutputs + 1])
            parameters["complex"] = True
        else:  # 3 layer perceptron Simple MLP Unit (not complex unit)
            parameters["Primary_Predictor_params"]['layers'] = MLP.get_layers(
                [ncontext + 1, 2 * nhidden + 1, noutputs + 1])
            parameters["Residual_Predictor_params"]['layers'] = MLP.get_layers(
                [ninputs + 2 * nhidden + 1, nhidden + 1, noutputs + 1])

        parameters["Primary_Predictor_params"][
            'beta'] = SharedArray.SharedNumpyArray((1, ), np.float)
        parameters["Primary_Predictor_params"]['beta'][0] = 1.0
        parameters["Primary_Predictor_params"]['learning_rate'] = parameters[
            'primary_learning_rate']
        parameters["Primary_Predictor_params"]['momentum'] = parameters[
            'momentum']
        parameters["Primary_Predictor_params"][
            'mse'] = SharedArray.SharedNumpyArray((1, ), np.float)
        parameters["Primary_Predictor_params"]['weights'] = MLP.get_weights(
            parameters["Primary_Predictor_params"]['layers'])

        parameters["Residual_Predictor_params"][
            'beta'] = SharedArray.SharedNumpyArray((1, ), np.float)
        parameters["Residual_Predictor_params"]['beta'][0] = 1.0
        parameters["Residual_Predictor_params"]['learning_rate'] = parameters[
            'primary_learning_rate']
        parameters["Residual_Predictor_params"]['momentum'] = parameters[
            'momentum']
        parameters["Residual_Predictor_params"][
            'mse'] = SharedArray.SharedNumpyArray((1, ), np.float)
        parameters["Residual_Predictor_params"]['weights'] = MLP.get_weights(
            parameters["Residual_Predictor_params"]['layers'])

        parameters["Readout_Predictor_params"]['layers'] = MLP.get_layers(
            [nhidden + 1, 2 * nhidden + 1, nadditional + 1])
        parameters["Readout_Predictor_params"][
            'beta'] = SharedArray.SharedNumpyArray((1, ), np.float)
        parameters["Readout_Predictor_params"]['beta'][0] = 1.0
        parameters["Readout_Predictor_params"]['learning_rate'] = parameters[
            'readout_learning_rate']
        parameters["Readout_Predictor_params"]['momentum'] = parameters[
            'momentum']
        parameters["Readout_Predictor_params"][
            'mse'] = SharedArray.SharedNumpyArray((1, ), np.float)
        parameters["Readout_Predictor_params"]['weights'] = MLP.get_weights(
            parameters["Readout_Predictor_params"]['layers'])
        parameters["Primary_Predictor_params"]['polynomial'] = polynomial
        parameters["Residual_Predictor_params"]['polynomial'] = polynomial
        parameters["Readout_Predictor_params"]['polynomial'] = polynomial
        parameters['autoencoder'] = autoencoder
コード例 #6
0
    def generate_missing_parameters(parameters, options):
        """
        This method can be called to generate all the missing dictionary parameters when all
        the other relevant variables are known. Leave empty if there is nothing more to generate.
        When complex_unit is False, a standard 3-layer MLP is used.
        When complex_unit is True, an MLP with additional hidden layers is used.

        There needs to be no return value, the method leaves a side effect by modifying the perameters dict.

        :param parameters: parameter dictionary
        :type parameters: dict
        """
        complex_unit = options['unit_type'] == "complex"
        polynomial = options['polynomial'] == '1'
        autoencoder = options['autoencoder'] == '1'
        use_t_2_block = options['use_t_minus_2_block'] == '1'
        use_derivative = options['use_derivative'] == '1'
        use_integral = options['use_integral'] == '1'
        use_error = options['use_error'] == '1'
        predict_2_steps = options['predict_two_steps'] == '1'
        use_global_backprop = options['use_global_backprop'] == '1'
        complex_context_in_second_layer = options[
            'feed_context_in_complex_layer'] == '1'
        parameters['normalize_output'] = options["normalize_output"] == "1"
        parameters['backpropagate_readout_error'] = options[
            "backpropagate_readout_error"] == "1"

        nhidden = np.prod(parameters['output_block'].shape)
        parameters['output_min'] = SharedArray.SharedNumpyArray_like(
            parameters['output_block'])
        parameters['output_max'] = SharedArray.SharedNumpyArray_like(
            parameters['output_block']) + 1
        parameters['avg_delta'] = SharedArray.SharedNumpyArray_like(
            parameters['output_block'])
        ninputs = 0
        noutputs = 0
        ncontext = 0
        # Any additional memory buffers needed in the operation of the unit
        parameters['internal_buffers'] = []
        parameters['integral_blocks'] = []
        parameters['derivative_blocks'] = []
        parameters['error_blocks'] = []
        parameters['use_derivative'] = use_derivative
        parameters['use_integral'] = use_integral
        parameters['use_error'] = use_error
        parameters['use_t_2_block'] = use_t_2_block
        parameters['predict_2_steps'] = predict_2_steps
        for (block, delta, pred_block,
             pred_block2) in parameters['signal_blocks']:
            block01 = SharedArray.SharedNumpyArray_like(block)
            block02 = SharedArray.SharedNumpyArray_like(block)
            block03 = SharedArray.SharedNumpyArray_like(block)
            parameters['internal_buffers'].append((block01, block02, block03))
            if use_derivative:
                parameters['derivative_blocks'].append(
                    SharedArray.SharedNumpyArray_like(block))
            if use_integral:
                parameters['integral_blocks'].append(
                    SharedArray.SharedNumpyArray_like(block))
            if use_error:
                parameters['error_blocks'].append(
                    SharedArray.SharedNumpyArray_like(block))

        input_block_features = 1
        output_predictions = 1
        if use_derivative:
            input_block_features += 1
        if use_integral:
            input_block_features += 1
        if use_error:
            input_block_features += 1
        if use_t_2_block:
            input_block_features += 1
        if predict_2_steps:
            output_predictions += 1

        for (block, delta, pred_block,
             pred_block2) in parameters['signal_blocks']:
            ninputs += np.prod(block.shape) * input_block_features
        for (block, delta, factor) in parameters['context_blocks']:
            ncontext += np.prod(block.shape)
        for (block, delta, pred_block,
             pred_block2) in parameters['signal_blocks']:
            noutputs += np.prod(block.shape) * output_predictions

        nreadout = 0
        for (block, delta, pblock) in parameters['readout_blocks']:
            nreadout += np.prod(block.shape)
        parameters["Primary_Predictor_params"] = {}
        parameters["Readout_Predictor_params"] = {}
        if complex_unit and complex_context_in_second_layer:  # 4 layer perceptron
            parameters["Primary_Predictor_params"]['layers'] = MLP.get_layers([
                ninputs + 1, 2 * nhidden + ncontext + 1, nhidden + 1,
                noutputs + 1
            ])
        elif complex_unit:
            parameters["Primary_Predictor_params"]['layers'] = MLP.get_layers([
                ninputs + ncontext + 1, 2 * nhidden + 1, nhidden + 1,
                noutputs + 1
            ])
        else:  # 3 layer perceptron Simple MLP Unit (not complex unit)
            parameters["Primary_Predictor_params"]['layers'] = MLP.get_layers(
                [ninputs + ncontext + 1, nhidden + 1, noutputs + 1])

        parameters["Primary_Predictor_params"][
            'beta'] = SharedArray.SharedNumpyArray((1, ), np.float)
        parameters["Primary_Predictor_params"]['beta'][0] = 1.0
        parameters["Primary_Predictor_params"]['learning_rate'] = parameters[
            'primary_learning_rate']
        parameters["Primary_Predictor_params"]['momentum'] = parameters[
            'momentum']
        parameters["Primary_Predictor_params"][
            'mse'] = SharedArray.SharedNumpyArray((1, ), np.float)
        parameters["Primary_Predictor_params"]['weights'] = MLP.get_weights(
            parameters["Primary_Predictor_params"]['layers'])

        parameters["Readout_Predictor_params"]['layers'] = MLP.get_layers(
            [nhidden + 1, 2 * nhidden + 1, nreadout + 1])
        parameters["Readout_Predictor_params"][
            'beta'] = SharedArray.SharedNumpyArray((1, ), np.float)
        parameters["Readout_Predictor_params"]['beta'][0] = 1.0
        parameters["Readout_Predictor_params"]['learning_rate'] = parameters[
            'readout_learning_rate']
        parameters["Readout_Predictor_params"]['momentum'] = parameters[
            'momentum']
        parameters["Readout_Predictor_params"][
            'mse'] = SharedArray.SharedNumpyArray((1, ), np.float)
        parameters["Readout_Predictor_params"]['weights'] = MLP.get_weights(
            parameters["Readout_Predictor_params"]['layers'])
        parameters["Primary_Predictor_params"]['polynomial'] = polynomial
        parameters["Readout_Predictor_params"]['polynomial'] = polynomial
        parameters['autoencoder'] = autoencoder
        parameters['use_global_backprop'] = use_global_backprop
        parameters[
            "complex_context_in_second_layer"] = complex_context_in_second_layer
        parameters["complex"] = complex_unit
コード例 #7
0
 def upgrade_to_ver_1(parameters):
     parameters['internal_buffers'] = []
     parameters['output_min'] = SharedArray.SharedNumpyArray_like(
         parameters['output_block'])
     parameters['output_max'] = SharedArray.SharedNumpyArray_like(
         parameters['output_block'])
     parameters['avg_delta'] = SharedArray.SharedNumpyArray_like(
         parameters['output_block'])
     parameters['integral_blocks'] = []
     parameters['derivative_blocks'] = []
     parameters['error_blocks'] = []
     parameters['use_derivative'] = True
     parameters['use_integral'] = True
     parameters['use_error'] = True
     parameters['use_t_2_block'] = False
     parameters['predict_2_steps'] = False
     parameters['use_global_backprop'] = False
     parameters['normalize_output'] = False
     parameters["complex_context_in_second_layer"] = False
     for (block, delta, pred_block,
          pred_block2) in parameters['signal_blocks']:
         block01 = SharedArray.SharedNumpyArray_like(block)
         block02 = SharedArray.SharedNumpyArray_like(block)
         block03 = SharedArray.SharedNumpyArray_like(block)
         parameters['internal_buffers'].append((block01, block02, block03))
         parameters['derivative_blocks'].append(
             SharedArray.SharedNumpyArray_like(block))
         parameters['integral_blocks'].append(
             SharedArray.SharedNumpyArray_like(block))
         parameters['error_blocks'].append(
             SharedArray.SharedNumpyArray_like(block))
     if "complex" not in parameters.keys():
         parameters["complex"] = False
     if len(parameters["Primary_Predictor_params"]['layers']) == 4:
         parameters["complex"] = True
     if "autoencoder" not in parameters.keys():
         parameters["autoencoder"] = False
     if "readout_learning_rate" not in parameters.keys():
         parameters['readout_learning_rate'] = parameters[
             "Primary_Predictor_params"]["learning_rate"]
     if "momentum" not in parameters.keys():
         parameters['momentum'] = parameters["Primary_Predictor_params"][
             "momentum"]
     nhidden = parameters["Primary_Predictor_params"]['layers'][-2][
         'activation'].shape[0] - 1
     nreadout = 0
     nouputs = 0
     for (block, delta, pred_block,
          pred_block2) in parameters['signal_blocks']:
         nouputs += np.prod(block.shape)
     for (block, delta, pblock) in parameters['readout_blocks']:
         nreadout += np.prod(block.shape)
     if "Readout_Predictor_params" not in parameters.keys():
         parameters["Readout_Predictor_params"] = {}
         parameters["Readout_Predictor_params"]['layers'] = MLP.get_layers(
             [nhidden + 1, nreadout + 1])
         parameters["Readout_Predictor_params"][
             'beta'] = SharedArray.SharedNumpyArray((1, ), np.float)
         parameters["Readout_Predictor_params"]['beta'][0] = 1.0
         parameters["Readout_Predictor_params"][
             'learning_rate'] = parameters['readout_learning_rate']
         parameters["Readout_Predictor_params"]['momentum'] = parameters[
             'momentum']
         parameters["Readout_Predictor_params"][
             'mse'] = SharedArray.SharedNumpyArray((1, ), np.float)
         parameters["Readout_Predictor_params"][
             'weights'] = MLP.get_weights(
                 parameters["Readout_Predictor_params"]['layers'])
         parameters["Readout_Predictor_params"]['weights'][
             0][:] = parameters["Primary_Predictor_params"]['weights'][
                 -1][:, nouputs:]
         old_weight_matrix = parameters["Primary_Predictor_params"][
             'weights'][-1]
         parameters["Primary_Predictor_params"]['weights'][
             -1] = SharedArray.SharedNumpyArray((nhidden + 1, nouputs),
                                                np.float)
         parameters["Primary_Predictor_params"]['weights'][
             -1][:] = old_weight_matrix[:, :nouputs]
         parameters["Primary_Predictor_params"]['layers'][-1] = {
             'activation': SharedArray.SharedNumpyArray(nouputs, np.float),
             'error': SharedArray.SharedNumpyArray(nouputs, np.float),
             'delta': SharedArray.SharedNumpyArray(nouputs, np.float)
         }
         parameters['backpropagate_readout_error'] = True