コード例 #1
0
def getStatsChan(pipeline, chanName, file):
    p = pipeline
    p.colourFilter.setColour(chanName)
    if chanName == 'Everything':
        label = 'Everything'
    else:
        label = p.fluorSpeciesDyes[chanName]
    if 'Camera.CycleTime' in p.mdh.getEntryNames():
        t = p.colourFilter['t'].astype('f') * p.mdh.getEntry(
            'Camera.CycleTime')
    else:
        t = p.colourFilter['t'].astype('f') * p.mdh.getEntry(
            'Camera.IntegrationTime')
    nEvents = t.size
    tMax = t.max()
    tMedian = np.median(t)
    meanPhotons = getPhotonNums(p.colourFilter, p.mdh).mean()

    sts = models.EventStats(fileID=file,
                            label=label,
                            nEvents=nEvents,
                            tMax=tMax,
                            tMedian=tMedian,
                            meanPhotons=meanPhotons)
    sts.save()
    return sts
コード例 #2
0
def gphotons(pipeline):
    colourFilter = pipeline.colourFilter
    metadata = pipeline.mdh
    chans = colourFilter.getColourChans()
    channame = ''
    if len(chans) == 0:
        nph = kinModels.getPhotonNums(colourFilter, metadata)
        merr = colourFilter['error_x']
        return [channame, nph.mean(), merr.mean()]
    ret = []
    curcol = colourFilter.currentColour
    for chan in chans:
        channame = pipeline.fluorSpeciesDyes[chan]
        colourFilter.setColour(chan)
        nph = kinModels.getPhotonNums(colourFilter, metadata)
        merr = colourFilter['error_x']
        ret.append([channame, nph.mean(), merr.mean()])

    colourFilter.setColour(curcol)
    return ret
コード例 #3
0
def analyseFile(filename):
    print(filename)
    seriesName = os.path.splitext(os.path.split(filename)[-1])[0]
    PL.ExtendContext({'seriesName':seriesName})
    try:
        pipe = Pipeline(filename)
    except RuntimeError:
        print(('Error opening %s' % filename))
        PL.PopContext()
        return
    
    #only look at first 7k frames
    pipe.filterKeys['t'] = (0, 7000)
    pipe.Rebuild()
    
    trackUtils.findTracks(pipe, 'error_x', 2, 20)
    pipe.Rebuild()

    extraParams = {}    
    extraParams['cycleTime'] = pipe.mdh['Camera.CycleTime']
    nPhot = kinModels.getPhotonNums(pipe.colourFilter, pipe.mdh)
    extraParams['MedianPhotons'] = np.median(nPhot)
    extraParams['MeanPhotons'] = np.mean(nPhot)
    extraParams['NEvents'] = len(nPhot)
    extraParams['MeanBackground'] = pipe['fitResults_background'].mean() - pipe.mdh['Camera.ADOffset']
    extraParams['MedianBackground'] = np.median(pipe['fitResults_background']) - pipe.mdh['Camera.ADOffset']
    extraParams['MeanClumpSize'] = pipe['clumpSize'].mean()
    extraParams['MeanClumpPhotons'] = (pipe['clumpSize']*nPhot).mean()
    
    PL.AddRecord('/Photophysics/ExtraParams', dictToRecarray(extraParams))
    
    kinModels.fitDecay(pipe)
    kinModels.fitFluorBrightness(pipe)
    #kinModels.fitFluorBrightnessT(pipe)

    #max_off_ts = [3,5,10,20,40]
    #max_off_ts = [20]

    #for ot in max_off_ts:
        #PL.ExtendContext({'otMax':ot})
        #find molecules appearing across multiple frames 
        
    kinModels.fitOnTimes(pipe)
        #PL.PopContext()
    
    pipe.CloseFiles()
     
    PL.PopContext()
コード例 #4
0
def plotphotons(pipeline, color='red'):
    nph = km.getPhotonNums(pipeline.colourFilter, pipeline.mdh)
    ph_range = 6 * nph.mean()
    n, bins = np.histogram(nph, np.linspace(0, ph_range, 100))
    plt.bar(bins[:-1], n, width=bins[1] - bins[0], alpha=0.4, color=color)
    return nph
コード例 #5
0
    def OpenFile(self, filename= '', ds = None, **kwargs):
        """Open a file - accepts optional keyword arguments for use with files
        saved as .txt and .mat. These are:
            
            FieldNames: a list of names for the fields in the text file or
                        matlab variable.
            VarName:    the name of the variable in the .mat file which 
                        contains the data.
            SkipRows:   Number of header rows to skip for txt file data
            
            PixelSize:  Pixel size if not in nm
            
        """
        
        #close any files we had open previously
        while len(self.filesToClose) > 0:
            self.filesToClose.pop().close()
        
        #clear our state
        self.dataSources.clear()
        if 'zm' in dir(self):
            del self.zm
        self.filter = None
        self.mapping = None
        self.colourFilter = None
        self.events = None
        self.mdh = MetaDataHandler.NestedClassMDHandler()
        
        self.filename = filename
        
        if ds is None:
            #load from file
            ds = self._ds_from_file(filename, **kwargs)

            
        #wrap the data source with a mapping so we can fiddle with things
        #e.g. combining z position and focus 
        mapped_ds = tabular.MappingFilter(ds)

        
        if 'PixelSize' in kwargs.keys():
            mapped_ds.addVariable('pixelSize', kwargs['PixelSize'])
            mapped_ds.setMapping('x', 'x*pixelSize')
            mapped_ds.setMapping('y', 'y*pixelSize')

        #extract information from any events
        self.ev_mappings, self.eventCharts = _processEvents(mapped_ds, self.events, self.mdh)



        #Fit module specific filter settings        
        if 'Analysis.FitModule' in self.mdh.getEntryNames():
            fitModule = self.mdh['Analysis.FitModule']
            
            #print 'fitModule = %s' % fitModule
            
            if 'Interp' in fitModule:
                self.filterKeys['A'] = (5, 100000)
            
            if 'LatGaussFitFR' in fitModule:
                mapped_ds.addColumn('nPhotons', getPhotonNums(mapped_ds, self.mdh))

            if 'SplitterFitFNR' in fitModule:
                mapped_ds.addColumn('nPhotonsg', getPhotonNums({'A': mapped_ds['fitResults_Ag'], 'sig': mapped_ds['fitResults_sigma']}, self.mdh))
                mapped_ds.addColumn('nPhotonsr', getPhotonNums({'A': mapped_ds['fitResults_Ar'], 'sig': mapped_ds['fitResults_sigma']}, self.mdh))
                mapped_ds.setMapping('nPhotons', 'nPhotonsg+nPhotonsr')

            if fitModule == 'SplitterShiftEstFR':
                self.filterKeys['fitError_dx'] = (0,10)
                self.filterKeys['fitError_dy'] = (0,10)

        #self._get_dye_ratios_from_metadata()

        self.addDataSource('Localizations', mapped_ds)

        # Retrieve or estimate image bounds
        if False:  # 'imgBounds' in kwargs.keys():
            self.imageBounds = kwargs['imgBounds']
        elif (not (
                'scanx' in mapped_ds.keys() or 'scany' in mapped_ds.keys())) and 'Camera.ROIWidth' in self.mdh.getEntryNames():
            self.imageBounds = ImageBounds.extractFromMetadata(self.mdh)
        else:
            self.imageBounds = ImageBounds.estimateFromSource(mapped_ds)

        from PYME.recipes.localisations import ProcessColour
        from PYME.recipes.tablefilters import FilterTable
        
        self.colour_mapper = ProcessColour(self.recipe, input='Localizations', output='colour_mapped')
        #we keep a copy of this so that the colour panel can find it.
        self.recipe.add_module(self.colour_mapper)
        self.recipe.add_module(FilterTable(self.recipe, inputName='colour_mapped', outputName='filtered_localizations', filters={k:list(v) for k, v in self.filterKeys.items() if k in mapped_ds.keys()}))
        self.recipe.execute()
        self.filterKeys = {}
        self.selectDataSource('filtered_localizations') #NB - this rebuilds the pipeline
コード例 #6
0
ファイル: pipeline.py プロジェクト: RuralCat/CLipPYME
    def OpenFile(self, filename= '', ds = None, **kwargs):
        '''Open a file - accepts optional keyword arguments for use with files
        saved as .txt and .mat. These are:
            
            FieldNames: a list of names for the fields in the text file or
                        matlab variable.
            VarName:    the name of the variable in the .mat file which 
                        contains the data.
            SkipRows:   Number of header rows to skip for txt file data
            
            PixelSize:  Pixel size if not in nm
            
        '''
        
        #close any files we had open previously
        while len(self.filesToClose) > 0:
            self.filesToClose.pop().close()
        
        #clear our state
        self.dataSources = []
        if 'zm' in dir(self):
            del self.zm
        self.filter = None
        self.mapping = None
        self.colourFilter = None
        self.events = None
        self.mdh = MetaDataHandler.NestedClassMDHandler()
        
        self.filename = filename
        
        if not ds is None:
            self.selectedDataSource = ds
            self.dataSources.append(ds)
        elif os.path.splitext(filename)[1] == '.h5r':
            try:
                self.selectedDataSource = inpFilt.h5rSource(filename)
                self.dataSources.append(self.selectedDataSource)

                self.filesToClose.append(self.selectedDataSource.h5f)

                if 'DriftResults' in self.selectedDataSource.h5f.root:
                    self.dataSources.append(inpFilt.h5rDSource(self.selectedDataSource.h5f))

                    if len(self.selectedDataSource['x']) == 0:
                        self.selectedDataSource = self.dataSources[-1]

            except: #fallback to catch series that only have drift data
                self.selectedDataSource = inpFilt.h5rDSource(filename)
                self.dataSources.append(self.selectedDataSource)
                
                self.filesToClose.append(self.selectedDataSource.h5f)

            #catch really old files which don't have any metadata
            if 'MetaData' in self.selectedDataSource.h5f.root:
                self.mdh = MetaDataHandler.HDFMDHandler(self.selectedDataSource.h5f)

           
            if ('Events' in self.selectedDataSource.h5f.root) and ('StartTime' in self.mdh.keys()):
                self.events = self.selectedDataSource.h5f.root.Events[:]

                        
        elif os.path.splitext(filename)[1] == '.mat': #matlab file
            ds = inpFilt.matfileSource(filename, kwargs['FieldNames'], kwargs['VarName'])
            self.selectedDataSource = ds
            self.dataSources.append(ds)

        elif os.path.splitext(filename)[1] == '.csv': 
            #special case for csv files - tell np.loadtxt to use a comma rather than whitespace as a delimeter
            if 'SkipRows' in kwargs.keys():
                ds = inpFilt.textfileSource(filename, kwargs['FieldNames'], delimiter=',', skiprows=kwargs['SkipRows'])
            else:
                ds = inpFilt.textfileSource(filename, kwargs['FieldNames'], delimiter=',')
            self.selectedDataSource = ds
            self.dataSources.append(ds)
            
        else: #assume it's a tab (or other whitespace) delimited text file
            if 'SkipRows' in kwargs.keys():
                ds = inpFilt.textfileSource(filename, kwargs['FieldNames'], skiprows=kwargs['SkipRows'])
            else:
                ds = inpFilt.textfileSource(filename, kwargs['FieldNames'])
            self.selectedDataSource = ds
            self.dataSources.append(ds)
            
        
            

        
            
            
        #wrap the data source with a mapping so we can fiddle with things
        #e.g. combining z position and focus 
        self.inputMapping = inpFilt.mappingFilter(self.selectedDataSource)
        self.selectedDataSource = self.inputMapping
        self.dataSources.append(self.inputMapping)
        
        if 'PixelSize' in kwargs.keys():
            self.selectedDataSource.pixelSize = kwargs['PixelSize']
            self.selectedDataSource.setMapping('x', 'x*pixelSize')
            self.selectedDataSource.setMapping('y', 'y*pixelSize')
            
        #Retrieve or estimate image bounds
        if 'Camera.ROIWidth' in self.mdh.getEntryNames():
            x0 = 0
            y0 = 0

            x1 = self.mdh.getEntry('Camera.ROIWidth')*1e3*self.mdh.getEntry('voxelsize.x')
            y1 = self.mdh.getEntry('Camera.ROIHeight')*1e3*self.mdh.getEntry('voxelsize.y')

            if 'Splitter' in self.mdh.getEntry('Analysis.FitModule'):
                if 'Splitter.Channel0ROI' in self.mdh.getEntryNames():
                    rx0, ry0, rw, rh = self.mdh['Splitter.Channel0ROI']
                    x1 = rw*1e3*self.mdh.getEntry('voxelsize.x')
                    x1 = rh*1e3*self.mdh.getEntry('voxelsize.x')
                else:
                    y1 = y1/2

            self.imageBounds = ImageBounds(x0, y0, x1, y1)
        else:
            self.imageBounds = ImageBounds.estimateFromSource(self.selectedDataSource)        
            
        #extract information from any events
        self._processEvents()
            
        
        #handle special cases which get detected by looking for the presence or
        #absence of certain variables in the data.        
        if 'fitResults_Ag' in self.selectedDataSource.keys():
            #if we used the splitter set up a number of mappings e.g. total amplitude and ratio
            self._processSplitter()

        if 'fitResults_ratio' in self.selectedDataSource.keys():
            #if we used the splitter set up a number of mappings e.g. total amplitude and ratio
            self._processPriSplit()

        if 'fitResults_sigxl' in self.selectedDataSource.keys():
            #fast, quickpalm like astigmatic fitting 
            self.selectedDataSource.setMapping('sig', 'fitResults_sigxl + fitResults_sigyu')
            self.selectedDataSource.setMapping('sig_d', 'fitResults_sigxl - fitResults_sigyu')

            self.selectedDataSource.dsigd_dz = -30.
            self.selectedDataSource.setMapping('fitResults_z0', 'dsigd_dz*sig_d')
            
        if not 'y' in self.selectedDataSource.keys():
            self.selectedDataSource.setMapping('y', '10*t')
            
            
            
        #set up correction for foreshortening and z focus stepping
        if not 'foreShort' in dir(self.selectedDataSource):
            self.selectedDataSource.foreShort = 1.

        if not 'focus' in self.selectedDataSource.mappings.keys():
            self.selectedDataSource.focus= np.zeros(self.selectedDataSource['x'].shape)
            
        if 'fitResults_z0' in self.selectedDataSource.keys():
            self.selectedDataSource.setMapping('z', 'fitResults_z0 + foreShort*focus')
        elif not 'z' in self.selectedDataSource.keys():
            self.selectedDataSource.setMapping('z', 'foreShort*focus')

        

        #Fit module specific filter settings        
        if 'Analysis.FitModule' in self.mdh.getEntryNames():
            fitModule = self.mdh['Analysis.FitModule']
            
            print 'fitModule = %s' % fitModule
            
            if 'Interp' in fitModule:
                self.filterKeys['A'] = (5, 100000)
                
            
            if 'LatGaussFitFR' in fitModule:
                self.selectedDataSource.nPhot = getPhotonNums(self.selectedDataSource, self.mdh)
                self.selectedDataSource.setMapping('nPhotons', 'nPhot')
                
                
            if fitModule == 'SplitterShiftEstFR':
                self.filterKeys['fitError_dx'] = (0,10)
                self.filterKeys['fitError_dy'] = (0,10)
                
        
        #remove any keys from the filter which are not present in the data
        for k in self.filterKeys.keys():
            if not k in self.selectedDataSource.keys():
                self.filterKeys.pop(k)

        
        self.Rebuild()


        if 'Sample.Labelling' in self.mdh.getEntryNames() and 'gFrac' in self.selectedDataSource.keys():
            self.SpecFromMetadata()
コード例 #7
0
    def OpenFile(self, filename='', ds=None, **kwargs):
        '''Open a file - accepts optional keyword arguments for use with files
        saved as .txt and .mat. These are:
            
            FieldNames: a list of names for the fields in the text file or
                        matlab variable.
            VarName:    the name of the variable in the .mat file which 
                        contains the data.
            SkipRows:   Number of header rows to skip for txt file data
            
            PixelSize:  Pixel size if not in nm
            
        '''

        #close any files we had open previously
        while len(self.filesToClose) > 0:
            self.filesToClose.pop().close()

        #clear our state
        self.dataSources = []
        if 'zm' in dir(self):
            del self.zm
        self.filter = None
        self.mapping = None
        self.colourFilter = None
        self.events = None
        self.mdh = MetaDataHandler.NestedClassMDHandler()

        self.filename = filename

        if not ds is None:
            self.selectedDataSource = ds
            self.dataSources.append(ds)
        elif os.path.splitext(filename)[1] == '.h5r':
            try:
                self.selectedDataSource = inpFilt.h5rSource(filename)
                self.dataSources.append(self.selectedDataSource)

                self.filesToClose.append(self.selectedDataSource.h5f)

                if 'DriftResults' in self.selectedDataSource.h5f.root:
                    self.dataSources.append(
                        inpFilt.h5rDSource(self.selectedDataSource.h5f))

                    if len(self.selectedDataSource['x']) == 0:
                        self.selectedDataSource = self.dataSources[-1]

            except:  #fallback to catch series that only have drift data
                self.selectedDataSource = inpFilt.h5rDSource(filename)
                self.dataSources.append(self.selectedDataSource)

                self.filesToClose.append(self.selectedDataSource.h5f)

            #catch really old files which don't have any metadata
            if 'MetaData' in self.selectedDataSource.h5f.root:
                self.mdh = MetaDataHandler.HDFMDHandler(
                    self.selectedDataSource.h5f)

            if ('Events' in self.selectedDataSource.h5f.root) and (
                    'StartTime' in self.mdh.keys()):
                self.events = self.selectedDataSource.h5f.root.Events[:]

        elif os.path.splitext(filename)[1] == '.mat':  #matlab file
            ds = inpFilt.matfileSource(filename, kwargs['FieldNames'],
                                       kwargs['VarName'])
            self.selectedDataSource = ds
            self.dataSources.append(ds)

        elif os.path.splitext(filename)[1] == '.csv':
            #special case for csv files - tell np.loadtxt to use a comma rather than whitespace as a delimeter
            if 'SkipRows' in kwargs.keys():
                ds = inpFilt.textfileSource(filename,
                                            kwargs['FieldNames'],
                                            delimiter=',',
                                            skiprows=kwargs['SkipRows'])
            else:
                ds = inpFilt.textfileSource(filename,
                                            kwargs['FieldNames'],
                                            delimiter=',')
            self.selectedDataSource = ds
            self.dataSources.append(ds)

        else:  #assume it's a tab (or other whitespace) delimited text file
            if 'SkipRows' in kwargs.keys():
                ds = inpFilt.textfileSource(filename,
                                            kwargs['FieldNames'],
                                            skiprows=kwargs['SkipRows'])
            else:
                ds = inpFilt.textfileSource(filename, kwargs['FieldNames'])
            self.selectedDataSource = ds
            self.dataSources.append(ds)

        #wrap the data source with a mapping so we can fiddle with things
        #e.g. combining z position and focus
        self.inputMapping = inpFilt.mappingFilter(self.selectedDataSource)
        self.selectedDataSource = self.inputMapping
        self.dataSources.append(self.inputMapping)

        if 'PixelSize' in kwargs.keys():
            self.selectedDataSource.pixelSize = kwargs['PixelSize']
            self.selectedDataSource.setMapping('x', 'x*pixelSize')
            self.selectedDataSource.setMapping('y', 'y*pixelSize')

        #Retrieve or estimate image bounds
        if 'Camera.ROIWidth' in self.mdh.getEntryNames():
            x0 = 0
            y0 = 0

            x1 = self.mdh.getEntry(
                'Camera.ROIWidth') * 1e3 * self.mdh.getEntry('voxelsize.x')
            y1 = self.mdh.getEntry(
                'Camera.ROIHeight') * 1e3 * self.mdh.getEntry('voxelsize.y')

            if 'Splitter' in self.mdh.getEntry('Analysis.FitModule'):
                if 'Splitter.Channel0ROI' in self.mdh.getEntryNames():
                    rx0, ry0, rw, rh = self.mdh['Splitter.Channel0ROI']
                    x1 = rw * 1e3 * self.mdh.getEntry('voxelsize.x')
                    x1 = rh * 1e3 * self.mdh.getEntry('voxelsize.x')
                else:
                    y1 = y1 / 2

            self.imageBounds = ImageBounds(x0, y0, x1, y1)
        else:
            self.imageBounds = ImageBounds.estimateFromSource(
                self.selectedDataSource)

        #extract information from any events
        self._processEvents()

        #handle special cases which get detected by looking for the presence or
        #absence of certain variables in the data.
        if 'fitResults_Ag' in self.selectedDataSource.keys():
            #if we used the splitter set up a number of mappings e.g. total amplitude and ratio
            self._processSplitter()

        if 'fitResults_ratio' in self.selectedDataSource.keys():
            #if we used the splitter set up a number of mappings e.g. total amplitude and ratio
            self._processPriSplit()

        if 'fitResults_sigxl' in self.selectedDataSource.keys():
            #fast, quickpalm like astigmatic fitting
            self.selectedDataSource.setMapping(
                'sig', 'fitResults_sigxl + fitResults_sigyu')
            self.selectedDataSource.setMapping(
                'sig_d', 'fitResults_sigxl - fitResults_sigyu')

            self.selectedDataSource.dsigd_dz = -30.
            self.selectedDataSource.setMapping('fitResults_z0',
                                               'dsigd_dz*sig_d')

        if not 'y' in self.selectedDataSource.keys():
            self.selectedDataSource.setMapping('y', '10*t')

        #set up correction for foreshortening and z focus stepping
        if not 'foreShort' in dir(self.selectedDataSource):
            self.selectedDataSource.foreShort = 1.

        if not 'focus' in self.selectedDataSource.mappings.keys():
            self.selectedDataSource.focus = np.zeros(
                self.selectedDataSource['x'].shape)

        if 'fitResults_z0' in self.selectedDataSource.keys():
            self.selectedDataSource.setMapping(
                'z', 'fitResults_z0 + foreShort*focus')
        elif not 'z' in self.selectedDataSource.keys():
            self.selectedDataSource.setMapping('z', 'foreShort*focus')

        #Fit module specific filter settings
        if 'Analysis.FitModule' in self.mdh.getEntryNames():
            fitModule = self.mdh['Analysis.FitModule']

            print 'fitModule = %s' % fitModule

            if 'Interp' in fitModule:
                self.filterKeys['A'] = (5, 100000)

            if 'LatGaussFitFR' in fitModule:
                self.selectedDataSource.nPhot = getPhotonNums(
                    self.selectedDataSource, self.mdh)
                self.selectedDataSource.setMapping('nPhotons', 'nPhot')

            if fitModule == 'SplitterShiftEstFR':
                self.filterKeys['fitError_dx'] = (0, 10)
                self.filterKeys['fitError_dy'] = (0, 10)

        #remove any keys from the filter which are not present in the data
        for k in self.filterKeys.keys():
            if not k in self.selectedDataSource.keys():
                self.filterKeys.pop(k)

        self.Rebuild()

        if 'Sample.Labelling' in self.mdh.getEntryNames(
        ) and 'gFrac' in self.selectedDataSource.keys():
            self.SpecFromMetadata()