コード例 #1
0
def analyseFile(filename):
    print(filename)
    seriesName = os.path.splitext(os.path.split(filename)[-1])[0]
    PL.ExtendContext({'seriesName': seriesName})
    try:
        pipe = Pipeline(filename)
    except RuntimeError:
        print(('Error opening %s' % filename))
        PL.PopContext()
        return

    #only look at first 7k frames
    #pipe.filterKeys['t'] = (0, 7000)
    pipe.Rebuild()

    autoDrift.correctDrift(pipe)

    imb = visHelpers.ImageBounds.estimateFromSource(pipe)

    jitVals = 1.0 * pipe['error_x']
    im = visHelpers.rendJitTriang(pipe['x'], pipe['y'], 20, jitVals, 1, imb, 5)

    pipe.CloseFiles()

    PL.PopContext()
コード例 #2
0
    def colfcnwrap(pipeline):
        colourFilter = pipeline.colourFilter
        metadata = pipeline.mdh
        chans = colourFilter.getColourChans()

        if USE_GUI:
            figure(os.path.split(pipeline.filename)[-1] + ' - ' + fcn.__name__)

        if len(chans) == 0:
            fcn(colourFilter, metadata)
        else:
            curChan = colourFilter.currentColour

            if 'rng' in args:
                nPh = getPhotonNums(colourFilter, metadata)
                rng = 6 * nPh.mean()

            chanNames = chans[:]

            if 'Sample.Labelling' in metadata.getEntryNames():
                lab = metadata.getEntry('Sample.Labelling')

                for i in range(len(lab)):
                    if lab[i][0] in chanNames:
                        chanNames[chanNames.index(lab[i][0])] = lab[i][1]

            for ch, i in zip(chans, range(len(chans))):
                colourFilter.setColour(ch)
                PL.ExtendContext({'chan': chanNames[i]})
                if 'rng' in args:
                    fcn(colourFilter, metadata, chanNames[i], i, rng)
                else:
                    fcn(colourFilter, metadata, chanNames[i], i)
                PL.PopContext()
            colourFilter.setColour(curChan)
コード例 #3
0
def fitOnTimes(colourFilter, metadata, channame='', i=0):
    numPerClump = colourFilter['clumpSize']

    n, bins = np.histogram(numPerClump, np.arange(20) + .001)
    n = n / np.arange(1, 20)

    cycTime = metadata.getEntry('Camera.CycleTime')

    res = FitModelWeighted(eimod, [n[0], .2], n[1:], 1. / (np.sqrt(n[1:]) + 1),
                           bins[2:] * cycTime)
    #res = FitModelPoisson(eimod, [n[0], .2], n[1:], bins[2:]*cycTime)
    ch2, mse = chi2_mse(eimod, n[1:], res, bins[2:] * cycTime)
    #mse = (res[2]['fvec']**2).mean()
    res2 = FitModelWeighted(ei2mod, [n[0], .2], n[1:],
                            1. / (np.sqrt(n[1:]) + 1), bins[2:] * cycTime,
                            cycTime)
    ch22, mse2 = chi2_mse(ei2mod, n[1:], res2, bins[2:] * cycTime, cycTime)

    PL.AddRecord('/Photophysics/OnTimes/eimod', munge_res(eimod, res, mse=mse))
    PL.AddRecord('/Photophysics/OnTimes/ei2mod',
                 munge_res(ei2mod, res2, mse=mse2))

    #print res[0]

    #figure()

    if USE_GUI:
        pylab.semilogy()

        pylab.bar(bins[:-1] * cycTime,
                  n,
                  width=cycTime,
                  alpha=0.4,
                  fc=colours[i])

        pylab.plot(np.linspace(1, 20, 50) * cycTime,
                   ei2mod(res2[0],
                          np.linspace(1, 20, 50) * cycTime, cycTime),
                   colours[i],
                   lw=3,
                   ls='--')
        pylab.plot(np.linspace(1, 20, 50) * cycTime,
                   eimod(res[0],
                         np.linspace(1, 20, 50) * cycTime),
                   colours[i],
                   lw=3)
        pylab.ylabel('Events')
        pylab.xlabel('Event Duration [s]')
        pylab.ylim((1, pylab.ylim()[1]))
        pylab.title(
            'Event Duration - CAUTION: unreliable if $\\tau <\\sim$ exposure time'
        )

        pylab.figtext(.6,
                      .8 - .05 * i,
                      channame + '\t$\\tau = %3.4fs$' % (res[0][1], ),
                      size=18,
                      color=colours[i])
    return 0
コード例 #4
0
def fitDecay(colourFilter, metadata, channame='', i=0):
    #get frames in which events occured and convert into seconds
    t = colourFilter['t'] * metadata.getEntry('Camera.CycleTime')

    n, bins = histogram(t, 100)

    b1 = bins[:-1]
    Nm = n.max()

    res = FitModel(e2mod, [Nm * 2, 15, -3, Nm * 3, n[1] / 1], n[1:], b1[1:],
                   Nm)
    #mse = (res[2]['fvec']**2).mean()
    #ch2 = chi2(res, n[1:])
    #print ch2
    ch2, mse = chi2_mse(e2mod, n[1:], res, b1[1:], Nm)

    PL.AddRecord('/Photophysics/Decay/e2mod',
                 munge_res(e2mod, res, mse=mse, ch2=ch2))

    res2 = FitModelPoisson(emod, [Nm * 2, 15, -3, Nm * 3, n[1] / 2], n[1:],
                           b1[1:], Nm)  #[0]
    ch2, mse = chi2_mse(hmod, n[1:], res2, b1[1:], Nm)

    PL.AddRecord('/Photophysics/Decay/emod',
                 munge_res(emod, res2, mse=mse, ch2=ch2))

    res3 = FitModelPoisson(hmod, [Nm * 2, 15, -3, Nm * 3, n[1] / 2], n[1:],
                           b1[1:], Nm)  #[0]
    ch2, mse = chi2_mse(hmod, n[1:], res3, b1[1:], Nm)

    PL.AddRecord('/Photophysics/Decay/hmod',
                 munge_res(hmod, res3, mse=mse, ch2=ch2))

    r4 = FitModelPoisson(e2mod, [Nm * 2, 15, -3, Nm * 3, n[1] / 2], n[1:],
                         b1[1:], Nm)
    ch2, mse = chi2_mse(e2mod, n[1:], r4, b1[1:], Nm)
    PL.AddRecord('/Photophysics/Decay/e2mod_p',
                 munge_res(e2mod, r4, mse=mse, ch2=ch2))

    if USE_GUI:
        bar(b1 / 60, n, width=(b1[1] - b1[0]) / 60, alpha=0.4, fc=colours[i])
        plot(b1 / 60, e2mod(res[0], b1, Nm), colours[i], lw=3)
        plot(b1 / 60, emod(res2[0], b1, Nm), colours[i], lw=2, ls='--')
        plot(b1 / 60, hmod(res3[0], b1, Nm), colours[i], lw=2, ls=':')
        plot(b1 / 60, e2mod(r4[0], b1, Nm), colours[i], lw=1)
        ylabel('Events')
        xlabel('Acquisition Time [mins]')
        title('Event Rate')

        b = 0.5 * (1 + erf(res[0][2])) * Nm

        figtext(.4,
                .8 - .05 * i,
                channame + '\t$\\tau = %3.2fs,\\;b = %3.2f$' %
                (res[0][1], b / res[0][0]),
                size=18,
                color=colours[i])
コード例 #5
0
def analyseFile(filename):
    print(filename)
    seriesName = os.path.splitext(os.path.split(filename)[-1])[0]
    PL.ExtendContext({'seriesName':seriesName})
    try:
        pipe = Pipeline(filename)
    except RuntimeError:
        print(('Error opening %s' % filename))
        PL.PopContext()
        return
    
    #only look at first 7k frames
    pipe.filterKeys['t'] = (0, 7000)
    pipe.Rebuild()
    
    trackUtils.findTracks(pipe, 'error_x', 2, 20)
    pipe.Rebuild()

    extraParams = {}    
    extraParams['cycleTime'] = pipe.mdh['Camera.CycleTime']
    nPhot = kinModels.getPhotonNums(pipe.colourFilter, pipe.mdh)
    extraParams['MedianPhotons'] = np.median(nPhot)
    extraParams['MeanPhotons'] = np.mean(nPhot)
    extraParams['NEvents'] = len(nPhot)
    extraParams['MeanBackground'] = pipe['fitResults_background'].mean() - pipe.mdh['Camera.ADOffset']
    extraParams['MedianBackground'] = np.median(pipe['fitResults_background']) - pipe.mdh['Camera.ADOffset']
    extraParams['MeanClumpSize'] = pipe['clumpSize'].mean()
    extraParams['MeanClumpPhotons'] = (pipe['clumpSize']*nPhot).mean()
    
    PL.AddRecord('/Photophysics/ExtraParams', dictToRecarray(extraParams))
    
    kinModels.fitDecay(pipe)
    kinModels.fitFluorBrightness(pipe)
    #kinModels.fitFluorBrightnessT(pipe)

    #max_off_ts = [3,5,10,20,40]
    #max_off_ts = [20]

    #for ot in max_off_ts:
        #PL.ExtendContext({'otMax':ot})
        #find molecules appearing across multiple frames 
        
    kinModels.fitOnTimes(pipe)
        #PL.PopContext()
    
    pipe.CloseFiles()
     
    PL.PopContext()
コード例 #6
0
def processDir(dataPath, outfile):
    #set the logging backend to the PyTables file
    TB = TablesBackend(outfile)
    PL.SetBackend(TB)
    
    #walk the path and analyse all .h5r
    for (path, dirs, files) in os.walk(dataPath):
        for f in files:
            if os.path.splitext(f)[1] in ['.h5r']:
                filename = os.path.join(path, f)
                analyseFile(filename)
コード例 #7
0
def fitFluorBrightness(colourFilter,
                       metadata,
                       channame='',
                       i=0,
                       rng=None,
                       quiet=False):
    #nPh = (colourFilter['A']*2*math.pi*(colourFilter['sig']/(1e3*metadata.getEntry('voxelsize.x')))**2)
    #nPh = nPh*metadata.getEntry('Camera.ElectronsPerCount')/metadata.getEntry('Camera.TrueEMGain')
    nPh = getPhotonNums(colourFilter, metadata)

    if rng is None:
        rng = nPh.mean() * 6

    n, bins = np.histogram(nPh, np.linspace(0, rng, 100))
    NEvents = len(colourFilter['t'])
    bins = bins[:-1]

    res = FitModel(fImod, [n.max(), bins[n.argmax()] / 2, 100,
                           nPh.mean()], n, bins)
    mse = (res[2]['fvec']**2).mean()
    if not quiet:
        PL.AddRecord('/Photophysics/FluorBrightness/fImod',
                     munge_res(fImod, res, mse=mse))

    #figure()
    #semilogy()
    if USE_GUI:
        plt.bar(bins, n, width=bins[1] - bins[0], alpha=0.4, fc=colours[i])

        plt.plot(bins, fImod(res[0], bins), colours[i], lw=3)
        plt.ylabel('Events')
        plt.xlabel('Intensity [photons]')
        #ylim((1, ylim()[1]))
        plt.title(
            'Event Intensity - CAUTION - unreliable if evt. duration $>\\sim$ exposure time'
        )
        #print res[0][2]

        plt.figtext(
            .4,
            .8 - .15 * i,
            channame +
            '\t$N_{det} = %3.0f\\;\\lambda = %3.0f$\n\t$Ph.mean = %3.0f$' %
            (res[0][1], res[0][3], nPh.mean()),
            size=18,
            color=colours[i],
            verticalalignment='top',
            horizontalalignment='left')

    return [channame, res[0][3], NEvents]
コード例 #8
0
def fitFluorBrightnessT(colourFilter, metadata, channame='', i=0, rng=None):
    #nPh = (colourFilter['A']*2*math.pi*(colourFilter['sig']/(1e3*metadata.getEntry('voxelsize.x')))**2)
    #nPh = nPh*metadata.getEntry('Camera.ElectronsPerCount')/metadata.getEntry('Camera.TrueEMGain')
    #from mpl_toolkits.mplot3d import Axes3D

    nPh = getPhotonNums(colourFilter, metadata)
    t = (colourFilter['t'].astype('f') - metadata['Protocol.DataStartsAt']
         ) * metadata.getEntry('Camera.CycleTime')
    NEvents = len(t)

    if rng is None:
        rng = nPh.mean() * 3

    Nco = nPh.min()

    n, xbins, ybins = np.histogram2d(
        nPh, t, [np.linspace(0, rng, 50),
                 np.linspace(0, t.max(), 20)])
    bins = xbins[:-1]

    xb = xbins[:-1][:, None] * np.ones([1, ybins.size - 1])
    yb = ybins[:-1][None, :] * np.ones([xbins.size - 1, 1])

    res0 = FitModel(
        fITmod2,
        [n.max() * 3, 1, np.median(nPh), 20, 1e2, 1e2, 100], n, xb, yb, Nco)
    print((res0[0]))

    PL.AddRecord('/Photophysics/FluorBrightness/fITmod2',
                 munge_res(fITmod2, res0))

    A, Ndet, lamb, tauI, a, Acrit, bg = res0[0]
    #Ndet = Ndet**2
    #NDetM = NDetM**2
    #Acrit = Acrit**2
    #a = (1+erf(a))/2

    Ndet = np.sqrt(Ndet**2 + 1) - 1  #+ve
    bg = np.sqrt(bg**2 + 1) - 1
    Acrit = np.sqrt(Acrit**2 + 1) - 1
    a = (1 + erf(a)) / 2  # [0,1]
    #bg = sqrt(bg**2 + 1) - 1
    #k = sqrt(k**2 + 1) - 1

    NDetM = bg

    rr = fITmod2(res0[0], xb, yb, Nco)
    if USE_GUI:

        pylab.figure()
        pylab.subplot(131)
        pylab.imshow(n, interpolation='nearest')
        pylab.colorbar()

        pylab.subplot(132)
        pylab.imshow(rr, interpolation='nearest')
        pylab.colorbar()

        pylab.subplot(133)
        pylab.imshow(n - rr, interpolation='nearest')
        pylab.colorbar()

        pylab.title(channame)

        pylab.figure()

        t_ = np.linspace(t[0], t[-1], 100)

        #sc = (lamb/(ybins[1] - ybins[0]))
        #sc = len(ybins)
        sc = 1. / (1 - np.exp(-(ybins[1] - ybins[0]) / lamb))
        print(('sc = ', sc))
        y1 = sc * A / ((t_ / tauI)**a + 1)
        pylab.plot(t_, y1)
        pylab.plot(t_, sc * (Ndet / ((t_ / tauI)**a + 1) + NDetM))

        pylab.bar(ybins[:-1], n.sum(0), width=ybins[1] - ybins[0], alpha=0.5)
        pylab.plot(ybins[:-1], rr.sum(0), lw=2)

        pylab.title(channame)
        pylab.xlabel('Time [s]')

        pylab.figtext(
            .2,
            .7,
            '$A = %3.0f\\;N_{det} = %3.2f\\;\\lambda = %3.0f\\;\\tau = %3.0f$\n$\\alpha = %3.3f\\;A_{crit} = %3.2f\\;N_{det_0} = %3.2f$'
            % (A, Ndet, lamb, tauI, a, Acrit, NDetM),
            size=18)

    return [channame, lamb, NEvents]