コード例 #1
0
    def _loadh5(self, filename):
        """Load PYMEs semi-custom HDF5 image data format. Offloads all the
        hard work to the HDFDataSource class"""
        import tables
        from PYME.IO.DataSources import HDFDataSource, BGSDataSource
        from PYME.IO import tabular

        self.dataSource = HDFDataSource.DataSource(filename, None)
        #chain on a background subtraction data source, so we can easily do
        #background subtraction in the GUI the same way as in the analysis
        self.data = BGSDataSource.DataSource(
            self.dataSource)  #this will get replaced with a wrapped version

        if 'MetaData' in self.dataSource.h5File.root:  #should be true the whole time
            self.mdh = MetaData.TIRFDefault
            self.mdh.copyEntriesFrom(
                MetaDataHandler.HDFMDHandler(self.dataSource.h5File))
        else:
            self.mdh = MetaData.TIRFDefault
            import wx
            wx.MessageBox(
                "Carrying on with defaults - no gaurantees it'll work well",
                'ERROR: No metadata found in file ...', wx.OK)
            print(
                "ERROR: No metadata fond in file ... Carrying on with defaults - no gaurantees it'll work well"
            )

        #attempt to estimate any missing parameters from the data itself
        try:
            MetaData.fillInBlanks(self.mdh, self.dataSource)
        except:
            logger.exception('Error attempting to populate missing metadata')

        #calculate the name to use when we do batch analysis on this
        #from PYME.IO.FileUtils.nameUtils import getRelFilename
        self.seriesName = getRelFilename(filename)

        #try and find a previously performed analysis
        fns = filename.split(os.path.sep)
        cand = os.path.sep.join(fns[:-2] + [
            'analysis',
        ] + fns[-2:]) + 'r'
        print(cand)
        if False:  #os.path.exists(cand):
            h5Results = tables.open_file(cand)

            if 'FitResults' in dir(h5Results.root):
                self.fitResults = h5Results.root.FitResults[:]
                self.resultsSource = tabular.H5RSource(h5Results)

                self.resultsMdh = MetaData.TIRFDefault
                self.resultsMdh.copyEntriesFrom(
                    MetaDataHandler.HDFMDHandler(h5Results))

        self.events = self.dataSource.getEvents()

        self.mode = 'LM'
コード例 #2
0
def convertFile(inFile, outFile):
    ds = tabular.H5RSource(inFile)

    nRecords = len(ds[ds.keys()[0]])

    of = open(outFile, 'w')

    of.write('#' + '\t'.join(['%s' % k for k in ds._keys]) + '\n')

    for row in zip(*[ds[k] for k in ds._keys]):
        of.write('\t'.join(['%e' % c for c in row]) + '\n')

    of.close()
コード例 #3
0
    def _ds_from_file(self, filename, **kwargs):
        """
        loads a data set from a file

        Parameters
        ----------
        filename : str
        kwargs : any additional arguments (see OpenFile)

        Returns
        -------
        ds : tabular.TabularBase
            the datasource, complete with metadatahandler and events if found.

        """
        mdh = MetaDataHandler.NestedClassMDHandler()
        events = None
        if os.path.splitext(filename)[1] == '.h5r':
            import tables
            h5f = tables.open_file(filename)
            self.filesToClose.append(h5f)

            try:
                ds = tabular.H5RSource(h5f)

                if 'DriftResults' in h5f.root:
                    driftDS = tabular.H5RDSource(h5f)
                    self.driftInputMapping = tabular.MappingFilter(driftDS)
                    #self.dataSources['Fiducials'] = self.driftInputMapping
                    self.addDataSource('Fiducials', self.driftInputMapping)

                    if len(ds['x']) == 0:
                        self.selectDataSource('Fiducials')

            except:  #fallback to catch series that only have drift data
                logger.exception('No fitResults table found')
                ds = tabular.H5RDSource(h5f)

                self.driftInputMapping = tabular.MappingFilter(ds)
                #self.dataSources['Fiducials'] = self.driftInputMapping
                self.addDataSource('Fiducials', self.driftInputMapping)
                #self.selectDataSource('Fiducials')

            # really old files might not have metadata, so test for it before assuming
            if 'MetaData' in h5f.root:
                mdh = MetaDataHandler.HDFMDHandler(h5f)

            if ('Events' in h5f.root) and ('StartTime' in mdh.keys()):
                events = h5f.root.Events[:]

        elif filename.endswith('.hdf'):
            #recipe output - handles generically formatted .h5
            import tables
            h5f = tables.open_file(filename)
            self.filesToClose.append(h5f)

            #defer our IO to the recipe IO method - TODO - do this for other file types as well
            self.recipe._inject_tables_from_hdf5('', h5f, filename, '.hdf')

            for dsname, ds_ in self.dataSources.items():
                #loop through tables until we get one which defines x. If no table defines x, take the last table to be added
                #TODO make this logic better.
                ds = ds_
                if 'x' in ds.keys():
                    # TODO - get rid of some of the grossness here
                    mdh = getattr(ds, 'mdh', mdh)
                    events = getattr(ds, 'events', events)
                    break

        elif os.path.splitext(filename)[1] == '.mat':  #matlab file
            if 'VarName' in kwargs.keys():
                #old style matlab import
                ds = tabular.MatfileSource(filename, kwargs['FieldNames'],
                                           kwargs['VarName'])
            else:
                if kwargs.get('Multichannel', False):
                    ds = tabular.MatfileMultiColumnSource(filename)
                else:
                    ds = tabular.MatfileColumnSource(filename)

                # check for column name mapping
                field_names = kwargs.get('FieldNames', None)
                if field_names:
                    if kwargs.get('Multichannel', False):
                        field_names.append(
                            'probe')  # don't forget to copy this field over
                    ds = tabular.MappingFilter(
                        ds, **{
                            new_field: old_field
                            for new_field, old_field in zip(
                                field_names, ds.keys())
                        })

        elif os.path.splitext(filename)[1] == '.csv':
            #special case for csv files - tell np.loadtxt to use a comma rather than whitespace as a delimeter
            if 'SkipRows' in kwargs.keys():
                ds = tabular.TextfileSource(filename,
                                            kwargs['FieldNames'],
                                            delimiter=',',
                                            skiprows=kwargs['SkipRows'])
            else:
                ds = tabular.TextfileSource(filename,
                                            kwargs['FieldNames'],
                                            delimiter=',')

        else:  #assume it's a tab (or other whitespace) delimited text file
            if 'SkipRows' in kwargs.keys():
                ds = tabular.TextfileSource(filename,
                                            kwargs['FieldNames'],
                                            skiprows=kwargs['SkipRows'])
            else:
                ds = tabular.TextfileSource(filename, kwargs['FieldNames'])

        # make sure mdh is writable (file-based might not be)
        ds.mdh = MetaDataHandler.NestedClassMDHandler(mdToCopy=mdh)
        if events is not None:
            # only set the .events attribute if we actually have events.
            # ensure that events are sorted in increasing time order
            ds.events = events[np.argsort(events['Time'])]

        return ds
コード例 #4
0
    def _ds_from_file(self, filename, **kwargs):
        """
        loads a data set from a file

        Parameters
        ----------
        filename : str
        kwargs : any additional arguments (see OpenFile)

        Returns
        -------

        ds : the dataset

        """

        if os.path.splitext(filename)[1] == '.h5r':
            import tables
            h5f = tables.open_file(filename)
            self.filesToClose.append(h5f)
            
            try:
                ds = tabular.H5RSource(h5f)

                if 'DriftResults' in h5f.root:
                    driftDS = tabular.H5RDSource(h5f)
                    self.driftInputMapping = tabular.MappingFilter(driftDS)
                    #self.dataSources['Fiducials'] = self.driftInputMapping
                    self.addDataSource('Fiducials', self.driftInputMapping)

                    if len(ds['x']) == 0:
                        self.selectDataSource('Fiducials')

            except: #fallback to catch series that only have drift data
                logger.exception('No fitResults table found')
                ds = tabular.H5RDSource(h5f)

                self.driftInputMapping = tabular.MappingFilter(ds)
                #self.dataSources['Fiducials'] = self.driftInputMapping
                self.addDataSource('Fiducials', self.driftInputMapping)
                #self.selectDataSource('Fiducials')

            #catch really old files which don't have any metadata
            if 'MetaData' in h5f.root:
                self.mdh.copyEntriesFrom(MetaDataHandler.HDFMDHandler(h5f))

            if ('Events' in h5f.root) and ('StartTime' in self.mdh.keys()):
                self.events = h5f.root.Events[:]

        elif filename.endswith('.hdf'):
            #recipe output - handles generically formatted .h5
            import tables
            h5f = tables.open_file(filename)
            self.filesToClose.append(h5f)

            for t in h5f.list_nodes('/'):
                if isinstance(t, tables.table.Table):
                    tab = tabular.HDFSource(h5f, t.name)
                    self.addDataSource(t.name, tab)
                        
                    if 'EventName' in t.description._v_names: #FIXME - we shouldn't have a special case here
                        self.events = t[:]  # this does not handle multiple events tables per hdf file

            if 'MetaData' in h5f.root:
                self.mdh.copyEntriesFrom(MetaDataHandler.HDFMDHandler(h5f))

            for dsname, ds_ in self.dataSources.items():
                #loop through tables until we get one which defines x. If no table defines x, take the last table to be added
                #TODO make this logic better.
                ds = ds_.resultsSource
                if 'x' in ds.keys():
                    break

        elif os.path.splitext(filename)[1] == '.mat': #matlab file
            if 'VarName' in kwargs.keys():
                #old style matlab import
                ds = tabular.MatfileSource(filename, kwargs['FieldNames'], kwargs['VarName'])
            else:
                ds = tabular.MatfileColumnSource(filename)
                

        elif os.path.splitext(filename)[1] == '.csv':
            #special case for csv files - tell np.loadtxt to use a comma rather than whitespace as a delimeter
            if 'SkipRows' in kwargs.keys():
                ds = tabular.TextfileSource(filename, kwargs['FieldNames'], delimiter=',', skiprows=kwargs['SkipRows'])
            else:
                ds = tabular.TextfileSource(filename, kwargs['FieldNames'], delimiter=',')

        else: #assume it's a tab (or other whitespace) delimited text file
            if 'SkipRows' in kwargs.keys():
                ds = tabular.TextfileSource(filename, kwargs['FieldNames'], skiprows=kwargs['SkipRows'])
            else:
                ds = tabular.TextfileSource(filename, kwargs['FieldNames'])



        return ds
コード例 #5
0
ファイル: base.py プロジェクト: b3nroll1ns/python-microscopy
    def loadInput(self, filename, key='input'):
        """Load input data from a file and inject into namespace

        Currently only handles images (anything you can open in dh5view). TODO -
        extend to other types.
        """
        #modify this to allow for different file types - currently only supports images
        from PYME.IO import unifiedIO
        import os
        extension = os.path.splitext(filename)[1]
        if extension in ['.h5r', '.h5', '.hdf']:
            import tables
            from PYME.IO import MetaDataHandler
            from PYME.IO import tabular

            with unifiedIO.local_or_temp_filename(filename) as fn:
                with tables.open_file(fn, mode='r') as h5f:
                    #make sure our hdf file gets closed

                    key_prefix = '' if key == 'input' else key + '_'

                    try:
                        mdh = MetaDataHandler.NestedClassMDHandler(
                            MetaDataHandler.HDFMDHandler(h5f))
                    except tables.FileModeError:  # Occurs if no metadata is found, since we opened the table in read-mode
                        logger.warning(
                            'No metadata found, proceeding with empty metadata'
                        )
                        mdh = MetaDataHandler.NestedClassMDHandler()

                    for t in h5f.list_nodes('/'):
                        # FIXME - The following isinstance tests are not very safe (and badly broken in some cases e.g.
                        # PZF formatted image data, Image data which is not in an EArray, etc ...)
                        # Note that EArray is only used for streaming data!
                        # They should ideally be replaced with more comprehensive tests (potentially based on array or dataset
                        # dimensionality and/or data type) - i.e. duck typing. Our strategy for images in HDF should probably
                        # also be improved / clarified - can we use hdf attributes to hint at the data intent? How do we support
                        # > 3D data?

                        if isinstance(t, tables.VLArray):
                            from PYME.IO.ragged import RaggedVLArray

                            rag = RaggedVLArray(
                                h5f, t.name, copy=True
                            )  #force an in-memory copy so we can close the hdf file properly
                            rag.mdh = mdh

                            self.namespace[key_prefix + t.name] = rag

                        elif isinstance(t, tables.table.Table):
                            #  pipe our table into h5r or hdf source depending on the extension
                            tab = tabular.H5RSource(
                                h5f, t.name
                            ) if extension == '.h5r' else tabular.HDFSource(
                                h5f, t.name)
                            tab.mdh = mdh

                            self.namespace[key_prefix + t.name] = tab

                        elif isinstance(t, tables.EArray):
                            # load using ImageStack._loadh5, which finds metdata
                            im = ImageStack(filename=filename, haveGUI=False)
                            # assume image is the main table in the file and give it the named key
                            self.namespace[key] = im

        elif extension == '.csv':
            logger.error('loading .csv not supported yet')
            raise NotImplementedError
        elif extension in ['.xls', '.xlsx']:
            logger.error('loading .xls not supported yet')
            raise NotImplementedError
        else:
            self.namespace[key] = ImageStack(filename=filename, haveGUI=False)
コード例 #6
0
    def _inject_tables_from_hdf5(self, key, h5f, filename, extension):
        """
        Search through hdf5 file nodes and add them to the recipe namespace

        Parameters
        ----------
        key : str
            base key name for loaded file components, if key is not the default 'input', each file node will be loaded into
            recipe namespace with `key`_`node_name`.
        h5f : file
            open hdf5 file
        filename : str
            full filename
        extension : str
            file extension, used here mainly to toggle which PYME.IO.tabular source is used for table nodes.
        """
        import tables
        from PYME.IO import MetaDataHandler, tabular

        key_prefix = '' if key == 'input' else key + '_'

        # Handle a 'MetaData' group as a special case
        # TODO - find/implement a more portable way of handling metadata in HDF (e.g. as .json in a blob) so that
        # non-python exporters have a chance of adding metadata
        if 'MetaData' in h5f.root:
            mdh = MetaDataHandler.NestedClassMDHandler(
                MetaDataHandler.HDFMDHandler(h5f))
        else:
            logger.warning('No metadata found, proceeding with empty metadata')
            mdh = MetaDataHandler.NestedClassMDHandler()

        events = None
        # handle an 'Events' table as a special case (so that it can be attached to subsequently loaded tables)
        # FIXME - this relies on a special /reserved table name and format and could raise name collision issues
        # when importing 3rd party / generic HDF
        # FIXME - do we really want to attach events (which will not get propagated through recipe modules)
        if ('Events' in h5f.root):
            if 'EventName' in h5f.root.Events.description._v_names:
                # check that the event table is formatted as we expect
                if ('StartTime' in mdh.keys()):
                    events = h5f.root.Events[:]
                else:
                    logger.warning(
                        'Acquisition events found in .hdf, but no "StartTime" in metadata'
                    )
            else:
                logger.warning(
                    'Table called "Events" found in .hdf does not match the signature for acquisition events, ignoring'
                )

        for t in h5f.list_nodes('/'):
            # FIXME - The following isinstance tests are not very safe (and badly broken in some cases e.g.
            # PZF formatted image data, Image data which is not in an EArray, etc ...)
            # Note that EArray is only used for streaming data!
            # They should ideally be replaced with more comprehensive tests (potentially based on array or dataset
            # dimensionality and/or data type) - i.e. duck typing. Our strategy for images in HDF should probably
            # also be improved / clarified - can we use hdf attributes to hint at the data intent? How do we support
            # > 3D data?

            if getattr(t, 'name', None) == 'Events':
                # NB: This assumes we've handled this in the special case earlier, and blocks anything in a 3rd party
                # HDF events table from being seen.
                # TODO - do we really want to have so much special case stuff in our generic hdf handling? Are we sure
                # that events shouldn't be injected into the namespace (given that events do not propagate through recipe modules)?
                continue

            elif isinstance(t, tables.VLArray):
                from PYME.IO.ragged import RaggedVLArray

                rag = RaggedVLArray(
                    h5f, t.name, copy=True
                )  #force an in-memory copy so we can close the hdf file properly
                rag.mdh = mdh
                if events is not None:
                    rag.events = events

                self.namespace[key_prefix + t.name] = rag

            elif isinstance(t, tables.table.Table):
                #  pipe our table into h5r or hdf source depending on the extension
                tab = tabular.H5RSource(
                    h5f, t.name) if extension == '.h5r' else tabular.HDFSource(
                        h5f, t.name)
                tab.mdh = mdh
                if events is not None:
                    tab.events = events

                self.namespace[key_prefix + t.name] = tab

            elif isinstance(t, tables.EArray):
                # load using ImageStack._loadh5
                # FIXME - ._loadh5 will load events lazily, which isn't great if we got here after
                # sending file over clusterIO inside of a context manager -> force it through since we already found it
                im = ImageStack(filename=filename,
                                mdh=mdh,
                                events=events,
                                haveGUI=False)
                # assume image is the main table in the file and give it the named key
                self.namespace[key] = im
コード例 #7
0
def generateThumbnail(inputFile, thumbSize):
    f1 = tabular.H5RSource(inputFile)

    threeD = False
    stack = False
    split = False

    #print f1.keys()

    if 'fitResults_Ag' in f1.keys():
        #if we used the splitter set up a mapping so we can filter on total amplitude and ratio
        f1_ = tabular.MappingFilter(f1, A='fitResults_Ag + fitResults_Ar', gFrac='fitResults_Ag/(fitResults_Ag + fitResults_Ar)')
        #f2 = inpFilt.resultsFilter(f1_, error_x=[0,30], A=[5, 1e5], sig=[100/2.35, 350/2.35])
        split = True
    else:
        f1_ = f1
        
    if 'fitResults_sigma' in f1.keys():
        f2 = tabular.ResultsFilter(f1_, error_x=[0, 30], A=[5, 1e5], sig=[100 / 2.35, 350 / 2.35])
    else:
        f2 = tabular.ResultsFilter(f1_, error_x=[0, 30], A=[5, 1e5])

    if 'fitResults_z0' in f1_.keys():
        threeD = True

    if 'Events' in dir(f1.h5f.root):
        events = f1.h5f.root.Events[:]

        evKeyNames = set()
        for e in events:
            evKeyNames.add(e['EventName'])

        if b'ProtocolFocus' in evKeyNames:
            stack = True



    xmax = f2['x'].max()
    ymax = f2['y'].max()

    if xmax > ymax:
        step = xmax/thumbSize
    else:
        step = ymax/thumbSize

    im, edx, edy = histogram2d(f2['x'], f2['y'], [arange(0, xmax, step), arange(0, ymax, step)])

    f1.close()

    im = minimum(2*(255*im)/im.max(), 255).T


    im = concatenate((im[:,:,newaxis], im[:,:,newaxis], im[:,:,newaxis]), 2)

    if stack:
        im[-10:, -10:, 0] = 180

    if threeD:
        im[-10:, -10:, 1] = 180

    if split:
        im[-10:-5, :10, 1] = 210
        im[-5:, :10, 0] = 210

    return im.astype('uint8')
コード例 #8
0
    def OpenFile(self, filename):
        self.dataSources = []
        if 'zm' in dir(self):
            del self.zm
        self.filter = None
        self.mapping = None
        self.colourFilter = None
        self.filename = filename

        self.selectedDataSource = inpFilt.H5RSource(filename)
        self.dataSources.append(self.selectedDataSource)

        self.mdh = MetaDataHandler.HDFMDHandler(self.selectedDataSource.h5f)

        if 'Camera.ROIWidth' in self.mdh.getEntryNames():
            x0 = 0
            y0 = 0

            x1 = self.mdh.getEntry(
                'Camera.ROIWidth') * 1e3 * self.mdh.getEntry('voxelsize.x')
            y1 = self.mdh.getEntry(
                'Camera.ROIHeight') * 1e3 * self.mdh.getEntry('voxelsize.y')

            if 'Splitter' in self.mdh.getEntry('Analysis.FitModule'):
                y1 = y1 / 2

            self.imageBounds = ImageBounds(x0, y0, x1, y1)
        else:
            self.imageBounds = ImageBounds.estimateFromSource(
                self.selectedDataSource)

        if 'fitResults_Ag' in self.selectedDataSource.keys():
            #if we used the splitter set up a mapping so we can filter on total amplitude and ratio
            #if not 'fitError_Ag' in self.selectedDataSource.keys():

            if 'fitError_Ag' in self.selectedDataSource.keys():
                self.selectedDataSource = inpFilt.MappingFilter(
                    self.selectedDataSource,
                    A='fitResults_Ag + fitResults_Ar',
                    gFrac='fitResults_Ag/(fitResults_Ag + fitResults_Ar)',
                    error_gFrac=
                    'sqrt((fitError_Ag/fitResults_Ag)**2 + (fitError_Ag**2 + fitError_Ar**2)/(fitResults_Ag + fitResults_Ar)**2)*fitResults_Ag/(fitResults_Ag + fitResults_Ar)'
                )
                sg = self.selectedDataSource['fitError_Ag']
                sr = self.selectedDataSource['fitError_Ar']
                g = self.selectedDataSource['fitResults_Ag']
                r = self.selectedDataSource['fitResults_Ar']
                I = self.selectedDataSource['A']
                self.selectedDataSource.colNorm = np.sqrt(
                    2 * np.pi) * sg * sr / (2 * np.sqrt(sg**2 + sr**2) * I) * (
                        scipy.special.erf(
                            (sg**2 * r + sr**2 * (I - g)) /
                            (np.sqrt(2) * sg * sr * np.sqrt(sg**2 + sr**2))) -
                        scipy.special.erf(
                            (sg**2 * (r - I) - sr**2 * g) /
                            (np.sqrt(2) * sg * sr * np.sqrt(sg**2 + sr**2))))
                self.selectedDataSource.setMapping('ColourNorm', '1.0*colNorm')
            else:
                self.selectedDataSource = inpFilt.MappingFilter(
                    self.selectedDataSource,
                    A='fitResults_Ag + fitResults_Ar',
                    gFrac='fitResults_Ag/(fitResults_Ag + fitResults_Ar)',
                    error_gFrac='0*x + 0.01')
                self.selectedDataSource.setMapping('fitError_Ag',
                                                   '1*sqrt(fitResults_Ag/1)')
                self.selectedDataSource.setMapping('fitError_Ar',
                                                   '1*sqrt(fitResults_Ar/1)')
                sg = self.selectedDataSource['fitError_Ag']
                sr = self.selectedDataSource['fitError_Ar']
                g = self.selectedDataSource['fitResults_Ag']
                r = self.selectedDataSource['fitResults_Ar']
                I = self.selectedDataSource['A']
                self.selectedDataSource.colNorm = np.sqrt(
                    2 * np.pi) * sg * sr / (2 * np.sqrt(sg**2 + sr**2) * I) * (
                        scipy.special.erf(
                            (sg**2 * r + sr**2 * (I - g)) /
                            (np.sqrt(2) * sg * sr * np.sqrt(sg**2 + sr**2))) -
                        scipy.special.erf(
                            (sg**2 * (r - I) - sr**2 * g) /
                            (np.sqrt(2) * sg * sr * np.sqrt(sg**2 + sr**2))))
                self.selectedDataSource.setMapping('ColourNorm', '1.0*colNorm')

            self.dataSources.append(self.selectedDataSource)

        elif 'fitResults_sigxl' in self.selectedDataSource.keys():
            self.selectedDataSource = inpFilt.MappingFilter(
                self.selectedDataSource)
            self.dataSources.append(self.selectedDataSource)

            self.selectedDataSource.setMapping(
                'sig', 'fitResults_sigxl + fitResults_sigyu')
            self.selectedDataSource.setMapping(
                'sig_d', 'fitResults_sigxl - fitResults_sigyu')

            self.selectedDataSource.dsigd_dz = -30.
            self.selectedDataSource.setMapping('fitResults_z0',
                                               'dsigd_dz*sig_d')
        else:
            self.selectedDataSource = inpFilt.MappingFilter(
                self.selectedDataSource)
            self.dataSources.append(self.selectedDataSource)

        if 'Events' in self.selectedDataSource.resultsSource.h5f.root:
            self.events = self.selectedDataSource.resultsSource.h5f.root.Events[:]

            evKeyNames = set()
            for e in self.events:
                evKeyNames.add(e['EventName'])

            if b'ProtocolFocus' in evKeyNames:
                self.zm = piecewiseMapping.GeneratePMFromEventList(
                    self.events, self.mdh, self.mdh.getEntry('StartTime'),
                    self.mdh.getEntry('Protocol.PiezoStartPos'))
                self.z_focus = 1.e3 * self.zm(self.selectedDataSource['t'])
                #self.elv.SetCharts([('Focus [um]', self.zm, 'ProtocolFocus'),])

                self.selectedDataSource.z_focus = self.z_focus
                self.selectedDataSource.setMapping('focus', 'z_focus')

            if 'ScannerXPos' in evKeyNames:
                x0 = 0
                if 'Positioning.Stage_X' in self.mdh.getEntryNames():
                    x0 = self.mdh.getEntry('Positioning.Stage_X')
                self.xm = piecewiseMapping.GeneratePMFromEventList(
                    self.elv.eventSource, self.mdh,
                    self.mdh.getEntry('StartTime'), x0, 'ScannerXPos', 0)

                self.selectedDataSource.scan_x = 1.e3 * self.xm(
                    self.selectedDataSource['t'] - .01)
                self.selectedDataSource.setMapping('ScannerX', 'scan_x')
                self.selectedDataSource.setMapping('x', 'x + scan_x')

            if 'ScannerYPos' in evKeyNames:
                y0 = 0
                if 'Positioning.Stage_Y' in self.mdh.getEntryNames():
                    y0 = self.mdh.getEntry('Positioning.Stage_Y')
                self.ym = piecewiseMapping.GeneratePMFromEventList(
                    self.elv.eventSource, self.mdh,
                    self.mdh.getEntry('StartTime'), y0, 'ScannerYPos', 0)

                self.selectedDataSource.scan_y = 1.e3 * self.ym(
                    self.selectedDataSource['t'] - .01)
                self.selectedDataSource.setMapping('ScannerY', 'scan_y')
                self.selectedDataSource.setMapping('y', 'y + scan_y')

            if 'ScannerXPos' in evKeyNames or 'ScannerYPos' in evKeyNames:
                self.imageBounds = ImageBounds.estimateFromSource(
                    self.selectedDataSource)

        if not 'foreShort' in dir(self.selectedDataSource):
            self.selectedDataSource.foreShort = 1.

        if not 'focus' in self.selectedDataSource.mappings.keys():
            self.selectedDataSource.focus = np.zeros(
                self.selectedDataSource['x'].shape)

        if 'fitResults_z0' in self.selectedDataSource.keys():
            self.selectedDataSource.setMapping(
                'z', 'fitResults_z0 + foreShort*focus')
        else:
            self.selectedDataSource.setMapping('z', 'foreShort*focus')

        #if we've done a 3d fit
        #print self.selectedDataSource.keys()
        for k in self.filterKeys.keys():
            if not k in self.selectedDataSource.keys():
                self.filterKeys.pop(k)

        #print self.filterKeys
        self.RegenFilter()

        if 'Sample.Labelling' in self.mdh.getEntryNames():
            self.SpecFromMetadata()