コード例 #1
0
    def OnMeasureClusters(self, event=None):
        """

        Calculates various measures for clusters using PYME.recipes.localisations.MeasureClusters

        Parameters
        ----------
        labelsKey: pipeline key to access array of label assignments. Measurements will be calculated for each label.


        """
        from PYME.recipes import localisations
        from PYME.recipes import Recipe

        # build a recipe programatically
        measrec = Recipe()

        measrec.add_module(
            localisations.MeasureClusters3D(measrec,
                                            inputName='input',
                                            labelsKey='dbscanClustered',
                                            outputName='output'))

        measrec.namespace['input'] = self.pipeline.output
        #configure parameters
        if not measrec.configure_traits(view=measrec.pipeline_view,
                                        kind='modal'):
            return  # handle cancel

        # run recipe
        meas = measrec.execute()

        # For now, don't make this a data source, as that requires (for multicolor) clearing the pipeline mappings.
        self.clusterMeasures.append(meas)
コード例 #2
0
    def __init__(self, filename=None, visFr=None):
        self.filter = None
        self.mapping = None
        self.colourFilter = None
        self.events = None

        self.recipe = Recipe(execute_on_invalidation=True)
        self.recipe.recipe_executed.connect(self.Rebuild)

        self.selectedDataSourceKey = None
        self.filterKeys = {
            'error_x': (0, 30),
            'error_y': (0, 30),
            'A': (5, 20000),
            'sig': (95, 200)
        }

        self.blobSettings = BlobSettings()
        self.objects = None

        self.imageBounds = ImageBounds(0, 0, 0, 0)
        self.mdh = MetaDataHandler.NestedClassMDHandler()

        self.Triangles = None
        self.edb = None
        self.Quads = None
        self.GeneratedMeasures = {}

        self.QTGoalPixelSize = 5

        self._extra_chan_num = 0

        self.filesToClose = []

        self.ev_mappings = {}

        #define a signal which a GUI can hook if the pipeline is rebuilt (i.e. the output changes)
        self.onRebuild = dispatch.Signal()

        #a cached list of our keys to be used to decide whether to fire a keys changed signal
        self._keys = None
        #define a signal which can be hooked if the pipeline keys have changed
        self.onKeysChanged = dispatch.Signal()

        self.ready = False
        #self.visFr = visFr

        if not filename is None:
            self.OpenFile(filename)
コード例 #3
0
    def OnClustersInTime(self, event=None):
        #FIXME - this would probably be better in an addon module outside of the core project
        from PYME.recipes import localisations
        from PYME.recipes import Recipe
        import matplotlib.pyplot as plt

        # build a recipe programatically
        rec = Recipe()

        # split input according to colour channel selected
        rec.add_module(
            localisations.ExtractTableChannel(rec,
                                              inputName='input',
                                              outputName='chan0',
                                              channel='chan0'))

        rec.add_module(
            localisations.ClusterCountVsImagingTime(rec,
                                                    inputName='chan0',
                                                    stepSize=3000,
                                                    outputName='output'))

        rec.namespace[
            'input'] = self.pipeline.output  #do before configuring so that we already have the channel names populated
        #configure parameters
        if not rec.configure_traits(view=rec.pipeline_view, kind='modal'):
            return  #handle cancel

        incrementedClumps = rec.execute()

        plt.figure()
        plt.scatter(incrementedClumps['t'],
                    incrementedClumps['N_labelsWithLowMinPoints'],
                    label=('clusters with Npoints > %i' %
                           rec.modules[-1].lowerMinPtsPerCluster),
                    c='b',
                    marker='s')
        plt.scatter(incrementedClumps['t'],
                    incrementedClumps['N_labelsWithHighMinPoints'],
                    label=('clusters with Npoints > %i' %
                           rec.modules[-1].higherMinPtsPerCluster),
                    c='g',
                    marker='o')

        plt.legend(loc=4, scatterpoints=1)
        plt.xlabel('Number of frames included')
        plt.ylabel('Number of Clusters')
コード例 #4
0
def test_queue_acquisitions():
    from PYME.IO.tabular import DictSource
    from PYME.recipes import Recipe
    import numpy as np
    import time

    action_manager.paused = True

    d = DictSource({'x': np.arange(10), 'y': np.arange(10)})
    rec = Recipe()
    rec.namespace['input'] = d

    spool_settings = {'extra_metadata': {'Sample.Well': '{file_stub}'}}

    rec.add_module(
        acquisition.QueueAcquisitions(rec, spool_settings=spool_settings))
    rec.save(context={'file_stub': 'A1'})
    time.sleep(1)
    task = action_manager.actionQueue.get_nowait()
    assert 'A1' == task[1]._then.params['extra_metadata']['Sample.Well']
コード例 #5
0
def test_stats_by_frame():
    recipe = Recipe()
    test_length = 10
    x, y = np.meshgrid(range(test_length), range(test_length))
    mask = x > test_length/2  # mask out everything but 6, 7, 8, 9

    # check 2D
    recipe.namespace['input'] = ImageStack(data=x)
    recipe.namespace['mask'] = ImageStack(data=mask)
    stats_mod = processing.StatisticsByFrame(input_name='input', mask='mask', output_name='output')
    recipe.add_module(stats_mod)
    stats = recipe.execute()
    # check results
    assert len(stats['mean']) == 1
    assert stats['mean'] == 7.5

    # test 3D with 2D mask
    recipe.namespace.clear()
    x3, y3, z3 = np.meshgrid(range(test_length), range(test_length), range(test_length))
    recipe.namespace['input'] = ImageStack(data=z3)
    # reuse the same mask from before, which will now take the right 4 columns at each slice
    recipe.namespace['mask'] = ImageStack(data=mask)
    stats = recipe.execute()
    # check results
    np.testing.assert_array_almost_equal(stats['mean'], range(test_length))

    # test 3D with 3D mask
    mask = x3 > test_length / 2
    recipe.namespace['mask'] = ImageStack(data=mask)
    stats = recipe.execute()
    # check results
    np.testing.assert_array_almost_equal(stats['mean'], np.ma.masked_array(z3, mask=~(x3 > test_length / 2)).mean(axis=(0, 1)))

    # test no mask
    stats_mod.mask = ''
    stats = recipe.execute()
    np.testing.assert_array_almost_equal(stats['mean'], np.mean(z3, axis=(0, 1)))
コード例 #6
0
    def OnPairwiseDistanceHistogram(self, event=None):
        from PYME.recipes import tablefilters, localisations, measurement
        from PYME.recipes import Recipe
        import matplotlib.pyplot as plt
        import wx
        import os

        # build a recipe programatically
        distogram = Recipe()

        # split input according to colour channels selected
        distogram.add_module(
            localisations.ExtractTableChannel(distogram,
                                              inputName='input',
                                              outputName='chan0',
                                              channel='chan0'))
        distogram.add_module(
            localisations.ExtractTableChannel(distogram,
                                              inputName='input',
                                              outputName='chan1',
                                              channel='chan0'))

        # Histogram
        distogram.add_module(
            measurement.PairwiseDistanceHistogram(distogram,
                                                  inputPositions='chan0',
                                                  inputPositions2='chan1',
                                                  outputName='output'))

        distogram.namespace[
            'input'] = self.pipeline.output  #do before configuring so that we already have the channel names populated
        #configure parameters
        if not distogram.configure_traits(view=distogram.pipeline_view,
                                          kind='modal'):
            return  #handle cancel
        selectedChans = (distogram.modules[-1].inputPositions,
                         distogram.modules[-1].inputPositions2)
        #run recipe
        distances = distogram.execute()

        binsz = (distances['bins'][1] - distances['bins'][0])
        self.pairwiseDistances[selectedChans] = {
            'counts': np.array(distances['counts']),
            'bins': np.array(distances['bins'] + 0.5 * binsz)
        }

        plt.figure()
        plt.bar(self.pairwiseDistances[selectedChans]['bins'] - 0.5 * binsz,
                self.pairwiseDistances[selectedChans]['counts'],
                width=binsz)

        hist_dlg = wx.FileDialog(
            None,
            message="Save histogram as csv...",
            #  defaultDir=os.getcwd(),
            defaultFile='disthist_{}.csv'.format(
                os.path.basename(self.pipeline.filename)),
            wildcard='CSV (*.csv)|*.csv',
            style=wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT)

        if hist_dlg.ShowModal() == wx.ID_OK:
            histfn = hist_dlg.GetPath()
            np.savetxt(histfn,
                       np.vstack([
                           self.pairwiseDistances[selectedChans]['bins'] -
                           0.5 * binsz,
                           self.pairwiseDistances[selectedChans]['counts']
                       ]).T,
                       delimiter=',',
                       header='Bins [nm],Counts')
コード例 #7
0
    def OnFindMixedClusters(self, event=None):
        """
        FindMixedClusters first uses DBSCAN clustering on two color channels separately for denoising purposes, then
        after having removed noisy points, DBSCAN is run again on both channels combined, and the fraction of clumps
        containing both colors is determined.
        """
        from PYME.recipes import tablefilters, localisations
        from PYME.recipes import Recipe
        import wx

        chans = self.pipeline.colourFilter.getColourChans()
        nchan = len(chans)
        if nchan < 2:
            raise RuntimeError(
                'FindMixedClusters requires at least two color channels')
        else:
            selectedChans = [0, 1]

        #rad_dlg = wx.NumberEntryDialog(None, 'Search Radius For Core Points', 'rad [nm]', 'rad [nm]', 125, 0, 9e9)
        #rad_dlg.ShowModal()
        searchRadius = 125.0  #rad_dlg.GetValue()
        #minPt_dlg = wx.NumberEntryDialog(None, 'Minimum Points To Be Core Point', 'min pts', 'min pts', 3, 0, 9e9)
        #minPt_dlg.ShowModal()
        minClumpSize = 3  #minPt_dlg.GetValue()

        #build a recipe programatically
        rec = Recipe()
        #split input according to colour channels
        rec.add_module(
            localisations.ExtractTableChannel(rec,
                                              inputName='input',
                                              outputName='chan0',
                                              channel=chans[0]))
        rec.add_module(
            localisations.ExtractTableChannel(rec,
                                              inputName='input',
                                              outputName='chan1',
                                              channel=chans[1]))

        #clump each channel
        rec.add_module(
            localisations.DBSCANClustering(rec,
                                           inputName='chan0',
                                           outputName='chan0_clumped',
                                           searchRadius=searchRadius,
                                           minClumpSize=minClumpSize))
        rec.add_module(
            localisations.DBSCANClustering(rec,
                                           inputName='chan1',
                                           outputName='chan1_clumped',
                                           searchRadius=searchRadius,
                                           minClumpSize=minClumpSize))

        #filter unclumped points
        rec.add_module(
            tablefilters.FilterTable(
                rec,
                inputName='chan0_clumped',
                outputName='chan0_cleaned',
                filters={'dbscanClumpID': [.5, sys.maxsize]}))
        rec.add_module(
            tablefilters.FilterTable(
                rec,
                inputName='chan1_clumped',
                outputName='chan1_cleaned',
                filters={'dbscanClumpID': [.5, sys.maxsize]}))

        #rejoin cleaned datasets
        rec.add_module(
            tablefilters.ConcatenateTables(rec,
                                           inputName0='chan0_cleaned',
                                           inputName1='chan1_cleaned',
                                           outputName='joined'))

        #clump on cleaded and rejoined data
        rec.add_module(
            localisations.DBSCANClustering(rec,
                                           inputName='joined',
                                           outputName='output',
                                           searchRadius=searchRadius,
                                           minClumpSize=minClumpSize))

        rec.namespace[
            'input'] = self.pipeline.output  #do it before configuring so that we already have the channe; names populated
        if not rec.configure_traits(view=rec.pipeline_view, kind='modal'):
            return  #handle cancel

        #run recipe
        joined_clumps = rec.execute()

        joined_clump_IDs = np.unique(joined_clumps['dbscanClumpID'])
        joined_clump_IDs = joined_clump_IDs[joined_clump_IDs >
                                            .5]  #reject unclumped points

        chan0_clump_IDs = np.unique(
            joined_clumps['dbscanClumpID'][joined_clumps['concatSource'] < .5])
        chan0_clump_IDs = chan0_clump_IDs[chan0_clump_IDs > .5]

        chan1_clump_IDs = np.unique(
            joined_clumps['dbscanClumpID'][joined_clumps['concatSource'] > .5])
        chan1_clump_IDs = chan1_clump_IDs[chan1_clump_IDs > .5]

        both_chans_IDS = [c for c in chan0_clump_IDs if c in chan1_clump_IDs]

        n_total_clumps = len(joined_clump_IDs)

        print('Total clumps: %i' % n_total_clumps)
        c0Ratio = float(len(chan0_clump_IDs)) / n_total_clumps
        print('fraction clumps with channel %i present: %f' %
              (selectedChans[0], c0Ratio))
        self.colocalizationRatios['Channel%iin%i%i' %
                                  (selectedChans[0], selectedChans[0],
                                   selectedChans[1])] = c0Ratio

        c1Ratio = float(len(chan1_clump_IDs)) / n_total_clumps
        print('fraction clumps with channel %i present: %f' %
              (selectedChans[1], c1Ratio))
        self.colocalizationRatios['Channel%iin%i%i' %
                                  (selectedChans[1], selectedChans[0],
                                   selectedChans[1])] = c1Ratio

        bothChanRatio = float(len(both_chans_IDS)) / n_total_clumps
        print('fraction of clumps with both channel %i and %i present: %f' %
              (selectedChans[0], selectedChans[1], bothChanRatio))
        self.colocalizationRatios['mixedClumps%i%i' %
                                  tuple(selectedChans)] = bothChanRatio

        self._rec = rec