コード例 #1
0
def next_move_plan(req):
    '''
    The function deals with the request of next_move_planner_server()
    :param req: string status
    :return: poseseq.poses = PoseArray[], contains the sequence of planned poses
    '''
    rospy.Subscriber('ltl_task',
                     String,
                     task_callback,
                     queue_size=1,
                     buff_size=2**24)
    # Subscribe task_publisher to get LTL task

    rospy.Subscriber('amcl_pose',
                     PoseWithCovarianceStamped,
                     pose_callback,
                     queue_size=1,
                     buff_size=2**24)
    # Subscribe amcl to get current estimated pose as initial pose. Planning will be given based on initial pose
    # Subscribing needs time and next sentences will run first. Hence, here needs a delay.

    rospy.sleep(1.0)

    robot_motion.set_initial(current_pose[1])
    robot_model = MotActModel(robot_motion, robot_action)
    robot_planner = ltl_planner(robot_model, hard_task, soft_task)
    start = time.time()
    robot_planner.optimal(10, 'static')
    # Synthesize motion FTS, action model and task to plan a pose sequence

    if req.status == 'PoseQueue':
        poseseq = PoseArray()
        poseseq.header.frame_id = "map"
        poseseq.header.stamp = rospy.Time.now()

        for index in range(len(robot_planner.run.pre_plan) - 2):
            qua_angle = quaternion_from_euler(
                0, 0, robot_planner.run.pre_plan[index][2], 'rxyz')
            poseseq.poses.append(
                Pose(
                    Point(robot_planner.run.pre_plan[index][0],
                          robot_planner.run.pre_plan[index][1], 0.000),
                    Quaternion(qua_angle[0], qua_angle[1], qua_angle[2],
                               qua_angle[3])))
            # Here can not directly use qua_angle value cuz it is not a quaternion type but only a tuple type
            # Data structure is given in P_MAG_TS, please read the instruction in the package
        return NextMoveResponse(poseseq.poses)
    else:
        print 'No acceptable move'
        return None
コード例 #2
0
def next_move_plan(req):
    '''
    The function deals with the request of next_move_planner_server()
    :param req: string status
    :return: poseseq.poses: PoseArray[], contains the sequence of planned poses
    '''

    global robot_planner
    poseseq = PoseStamped()
    poseseq.header.frame_id = "map"
    poseseq.header.stamp = rospy.Time.now()

    if req.status == 'PlanSynthesis':
        # Synthesize motion FTS, action model and task to plan a pose sequence
        robot_motion.set_initial(current_pose[1])
        robot_model = MotActModel(robot_motion, robot_action)
        robot_planner = ltl_planner(robot_model, hard_task, soft_task)
        start = time.time()
        robot_planner.optimal(10, 'static')

        next_move = robot_planner.run.pre_plan[0]
        qua_angle = quaternion_from_euler(0, 0, next_move[2], 'rxyz')
        poseseq.pose = Pose(
            Point(next_move[0], next_move[1], 0.000),
            Quaternion(qua_angle[0], qua_angle[1], qua_angle[2], qua_angle[3]))

        return NextMoveResponse(poseseq.pose)

    elif req.status == 'FirstMove':
        next_move = robot_planner.next_move
        qua_angle = quaternion_from_euler(0, 0, next_move[2], 'rxyz')
        poseseq.pose = Pose(
            Point(next_move[0], next_move[1], 0.000),
            Quaternion(qua_angle[0], qua_angle[1], qua_angle[2], qua_angle[3]))

        return NextMoveResponse(poseseq.pose)

    elif req.status == 'NextMove':
        next_move = robot_planner.find_next_move()
        qua_angle = quaternion_from_euler(0, 0, next_move[2], 'rxyz')
        poseseq.pose = Pose(
            Point(next_move[0], next_move[1], 0.000),
            Quaternion(qua_angle[0], qua_angle[1], qua_angle[2], qua_angle[3]))
        # Here can not directly use qua_angle value cuz it is not a quaternion type but only a tuple type
        # Data structure is given in P_MAG_TS, please read the instruction in the package
        return NextMoveResponse(poseseq.pose)
    else:
        print 'Please synthesis plan first and then navigate.'
        return None
コード例 #3
0
    def _plan_syn(self, map_name, ap, regions, edges, action, hard_task):
        self.PlanViewer.clear()

        #self.s.login('12.0.5.2', 'ubuntu', 'ubuntu', original_prompt='$$S', port=22, auto_prompt_reset=True)

        if not (map_name and hard_task and self.InitPosInputR1.text()):
            if not map_name:
                self.PlanViewer.append('Please select a map first')
            elif not hard_task:
                self.PlanViewer.append('Please input a task first')
            else:
                self.PlanViewer.append('Please input a initial position')

        else:
            start_pos = regions.keys()[regions.values().index(
                set([str(self.InitPosInputR1.text())]))]
            # here the region must start with lower-case r instead of capital R

            robot_motion = MotionFts(regions, ap, map_name)
            robot_motion.set_initial(start_pos)
            robot_motion.add_un_edges(edges, unit_cost=0.1)
            robot_action = ActionModel(action)
            robot_model = MotActModel(robot_motion, robot_action)
            sys.stdout = EmittingStream(textWritten=self.text_written)
            robot_planner = ltl_planner(robot_model, hard_task, None)
            robot_planner.optimal(10, 'static')
            sys.stdout = sys.__stdout__

            self.PlanViewer.append('The start point is: ' + str(start_pos))
            self.PlanViewer.append('It will move to the next point: ' +
                                   str(robot_planner.next_move))

            stream = file(
                os.path.join(self.rp.get_path('rqt_ltl'), 'map', 'task.yaml'),
                'w')
            data = dict(total_task=hard_task + ',' + '',
                        start_point=start_pos,
                        map_name=map_name)
            yaml.dump(data,
                      stream,
                      default_flow_style=False,
                      allow_unicode=False)
コード例 #4
0
def construct_product(M, N):
    # create motion model
    robot_motion = create_rectworld(M, N, True)
    draw_world(robot_motion, M, N)
    robot_motion.set_initial((0, 0))
    # empty action model
    robot_action = ActionModel(dict())
    # complete robot model
    robot_model = MotActModel(robot_motion, robot_action)
    # task formula
    hard_task = '[]! x%dy%d' % (floor(0.5 * M), floor(0.5 * N))
    soft_task = '([]<> x%dy%d) && ([]<> x%dy%d) && ([]<> x%dy%d)' % (
        M - 1, 0, M - 1, N - 1, 0, N - 1)
    print '------------------------------'
    print 'hard_task: %s ||| soft_task: %s' % (str(hard_task), str(soft_task))
    print '------------------------------'
    # set planner
    alpha = 10
    robot_planner = ltl_planner(robot_model, hard_task, soft_task, alpha)
    return robot_planner
コード例 #5
0
ファイル: agent_planner.py プロジェクト: ptajvar/P_MAS_TG
def planner(letter, ts, act, task):
    global header
    global POSE
    global c
    global confirm
    global object_name
    global region
    rospy.init_node('planner_%s' % letter)
    print 'Agent %s: planner started!' % (letter)
    ###### publish to
    activity_pub = rospy.Publisher('next_move_%s' % letter,
                                   activity,
                                   queue_size=10)
    ###### subscribe to
    rospy.Subscriber('activity_done_%s' % letter, confirmation,
                     confirm_callback)
    rospy.Subscriber('knowledge_%s' % letter, knowledge, knowledge_callback)
    ####### agent information
    c = 0
    k = 0
    flag = 0
    full_model = MotActModel(ts, act)
    #### construct ltl_planner object
    planner = ltl_planner(full_model, None, task)
    ####### initial plan synthesis
    planner.optimal(10)
    #######
    while not rospy.is_shutdown():
        next_activity = activity()
        ###############  check for knowledge udpate
        if object_name:
            # konwledge detected
            planner.update(object_name, region)
            print 'Agent %s: object incorporated in map!' % (letter, )
            planner.replan_simple()
            object_name = None
        ############### send next move
        next_move = planner.next_move
        next_state = planner.next_state
        ############### implement next activity
        if isinstance(next_move, str):
            # next activity is action
            next_activity.header = header
            next_activity.type = next_move
            next_activity.x = -0.76
            next_activity.y = 0.30
            print 'Agent %s: next action %s!' % (letter, next_activity.type)
            while not ((confirm[0] == next_move) and
                       (confirm[1] > 0) and confirm[2] == header):
                activity_pub.publish(next_activity)
                rospy.sleep(0.06)
            rospy.sleep(1)
            confirm[1] = 0
            header = header + 1
            print 'Agent %s: action %s done!' % (letter, next_activity.type)
        else:
            print 'Agent %s: next waypoint (%.2f,%.2f,%.2f)!' % (
                letter, next_move[0], next_move[1], next_move[2])
            while not ((confirm[0] == 'goto') and
                       (confirm[1] > 0) and confirm[2] == header):
                next_activity.type = 'goto'
                next_activity.header = header
                next_activity.x = next_move[0]
                next_activity.y = next_move[1]
                next_activity.psi = next_move[2]
                activity_pub.publish(next_activity)
                rospy.sleep(0.06)
            rospy.sleep(1)
            confirm[1] = 0
            header = header + 1
            print 'Agent %s: waypoint (%.2f,%.2f,%.2f) reached!' % (
                letter, next_move[0], next_move[1], next_move[2])
            planner.pose = [next_move[0], next_move[1]]
        planner.find_next_move()
コード例 #6
0
ファイル: office_sim.py プロジェクト: ptajvar/P_MAS_TG
##############################
# complete robot model
robot_model = MotActModel(robot_motion, robot_action)



##############################
# specify tasks
########## only hard
# robot 1
# hard_task = '<>(p1 && <> (p4 && <> p8)) && ([]<> p6) && ([]<> p9)'
# robot 2
# hard_task = '([]<> (p1 && <> p2)) && ([]<> p4)'
# robot 3
# hard_task = '([]<> (p3 && <> (p6 || p8)))'
# robot 4
hard_task = '([]<> p7) && ([]<> p8) && ([]<> p5)'

soft_task = None

print 'robot_task: %s' %hard_task
##############################
# set planner
robot_planner = ltl_planner(robot_model, hard_task, soft_task)

# synthesis
start = time.time()
robot_planner.optimal(10,'static')

print 'full construction and synthesis done within %.2fs \n' %(time.time()-start)
コード例 #7
0
print '===================='

c_buffer_size = [4,4,1,1]
buffer_size = []
for k in range(len(c_buffer_size)):
    for n in range(N):
        buffer_size.append(c_buffer_size[k])

com_rad = 1

t0 = time.time()
composed_fts = compose_sys_fts(sys_models, add_data, symbols, buffer_size, com_rad)
print 'Composed fts done in %.2f' %(time.time()-t0)
print '===================='

t0 = time.time()
composed_task = compose_sys_ltl(sys_models)
print 'Composed task done in %.2f' %(time.time()-t0)
print '===================='

t0 = time.time()
composed_planner = ltl_planner(composed_fts, composed_task, None)
print 'Composed planner initialized  in %.2f' %(time.time()-t0)
print '===================='

t0 = time.time()
composed_planner.optimal(style='ready')
print 'Optimal plan found in %.2f' %(time.time()-t0)
print '===================='
print 'Everything done in %.2f' %(time.time()-T0)
コード例 #8
0
    'ub': (COST, '1', set(['ub'])),
}
dep['lb'] = set([
    'hb',
])
dep['ub'] = set([
    'hb',
])
A1_action = ActionModel(A1_action_dict)
# A1 task
A1_hard_task = '<>(la && <>(ua && r2)) && <>(lb && <>(ub && r3)) && ([]<>r0)'
#A1_hard_task = '<> t1'
A1_soft_task = None
# A1 model, planner
A1_model = MotActModel(A1_motion, A1_action)
A1_planner = ltl_planner(A1_model, A1_hard_task, A1_soft_task)

#=================================
# A2 fts
A2_init_pose = [2.0, 2.0, 0.0]
A2_node_dict = {
    (2.0, 2.0, 0.1): set(['r0']),
    (0.5, 0.5, 0.2): set(['r1']),
    (3.5, 0.5, 0.2): set(['r2']),
    (0.5, 2.0, 0.2): set(['r3']),
    (3.5, 2.0, 0.2): set(['r4']),
    (0.5, 3.3, 0.2): set(['r5']),
    (3.5, 3.3, 0.2): set(['r6']),
    (2.0, 1.0, 0.3): set(['r7']),
    (2.0, 3.0, 0.3): set(['r8']),
}
コード例 #9
0
ファイル: agent_planner.py プロジェクト: MengGuo/P_MAS_TG
def planner(letter, ts, act, task):
    global header
    global POSE
    global c
    global confirm
    global object_name
    global region
    rospy.init_node('planner_%s' %letter)
    print 'Agent %s: planner started!' %(letter)
    ###### publish to
    activity_pub   = rospy.Publisher('next_move_%s' %letter, activity, queue_size=10)
    ###### subscribe to
    rospy.Subscriber('activity_done_%s' %letter, confirmation, confirm_callback)
    rospy.Subscriber('knowledge_%s' %letter, knowledge, knowledge_callback)
    ####### agent information
    c = 0
    k = 0
    flag   = 0
    full_model = MotActModel(ts, act)
    #### construct ltl_planner object
    planner = ltl_planner(full_model, None, task)
    ####### initial plan synthesis
    planner.optimal(10)
    #######
    while not rospy.is_shutdown():
        next_activity = activity()
        ###############  check for knowledge udpate
        if object_name:
            # konwledge detected
            planner.update(object_name, region)
            print 'Agent %s: object incorporated in map!' %(letter,)
            planner.replan_simple()
            object_name = None
        ############### send next move
        next_move = planner.next_move
        next_state = planner.next_state
        ############### implement next activity
        if isinstance(next_move, str):
            # next activity is action
            next_activity.header = header
            next_activity.type = next_move
            next_activity.x = -0.76
            next_activity.y = 0.30
            print 'Agent %s: next action %s!' %(letter, next_activity.type)
            while not ((confirm[0]==next_move) and (confirm[1]>0) and confirm[2] == header):
                activity_pub.publish(next_activity)
                rospy.sleep(0.06)
            rospy.sleep(1)
            confirm[1] = 0
            header = header + 1
            print 'Agent %s: action %s done!' %(letter, next_activity.type)
        else:
            print 'Agent %s: next waypoint (%.2f,%.2f,%.2f)!' %(letter, next_move[0], next_move[1], next_move[2])
            while not ((confirm[0]=='goto') and (confirm[1]>0) and confirm[2] == header):
                next_activity.type = 'goto'
                next_activity.header = header
                next_activity.x = next_move[0]
                next_activity.y = next_move[1]
                next_activity.psi = next_move[2]
                activity_pub.publish(next_activity)
                rospy.sleep(0.06)
            rospy.sleep(1)
            confirm[1] = 0
            header = header + 1
            print 'Agent %s: waypoint (%.2f,%.2f,%.2f) reached!' %(letter, next_move[0], next_move[1], next_move[2])
            planner.pose = [next_move[0], next_move[1]]
        planner.find_next_move()    
コード例 #10
0
ファイル: agents_init.py プロジェクト: MengGuo/P_MAS_TG
A1_motion.add_full_edges(unit_cost = 1.0/SPEED[0])
# A1 action
A1_action_dict= {'la': (COST,'a',set([ 'la'])),
				'ua': (COST,'1',set([ 'ua'])),
				'lb': (COST,'b',set([ 'lb'])),
				'ub': (COST,'1',set([ 'ub'])),}
dep['lb']=set(['hb',])
dep['ub']=set(['hb',])
A1_action = ActionModel(A1_action_dict)
# A1 task
A1_hard_task = '<>(la && <>(ua && r2)) && <>(lb && <>(ub && r3)) && ([]<>r0)'
#A1_hard_task = '<> t1'
A1_soft_task = None
# A1 model, planner 
A1_model = MotActModel(A1_motion, A1_action)
A1_planner = ltl_planner(A1_model, A1_hard_task, A1_soft_task)

#=================================
# A2 fts
A2_init_pose = [2.0,2.0,0.0]
A2_node_dict = {
 (2.0,2.0,0.1): set(['r0']),
 (0.5,0.5,0.2): set(['r1']),
 (3.5,0.5,0.2): set(['r2']),
 (0.5,2.0,0.2): set(['r3']),
 (3.5,2.0,0.2): set(['r4']),
 (0.5,3.3,0.2): set(['r5']),
 (3.5,3.3,0.2): set(['r6']),
 (2.0,1.0,0.3): set(['r7']),
 (2.0,3.0,0.3): set(['r8']),
}