コード例 #1
0
    # Open ClickPoints Database
    db = DataFileExtended("./ExampleData/sim_data.cdb", "w")
    # Define ClickPoints Marker
    detection_marker_type = db.setMarkerType(name="Detection_Marker",
                                             color="#FF0000",
                                             style='{"scale":1.2}')
    db.deleteMarkers(type=detection_marker_type)
    track_marker_type = db.setMarkerType(name="Track_Marker",
                                         color="#00FF00",
                                         mode=db.TYPE_Track)
    db.deleteMarkers(type=track_marker_type)
    prediction_marker_type = db.setMarkerType(name="Prediction_Marker",
                                              color="#0000FF")
    db.deleteMarkers(type=prediction_marker_type)
    # Delete Old Tracks
    db.deleteTracks(type=track_marker_type)

    # Start Iteration over Images
    db_path = db.setPath("")
    print('Starting Iteration')
    for i in range(T):
        # Prediction step, without applied control(vector of zeros)
        MultiKal.predict(i=i)
        image = db.setImage("", db_path, timestamp=i)
        # Detection step
        SegMap = TS.detect(image.data)
        X, Y = np.random.rand(0, 1, (2, N))
        X *= arena_w
        Y *= arena_h

        print("Found %s Objects!" % len(Positions))
コード例 #2
0
if db.getMarkerType(name="PT_Prediction_Marker"):
    marker_type3 = db.getMarkerType(name= "PT_Prediction_Marker")
else:
    marker_type3 = db.setMarkerType(name="PT_Prediction_Marker", color="#0000FF")
if db.getMarkerType(name="PT_Stitch_Marker"):
    marker_type4 = db.getMarkerType(name="PT_Stitch_Marker")
else:
    marker_type4 = db.setMarkerType(name="PT_Stitch_Marker", color="#FF8800", mode=db.TYPE_Track)

# Delete Old Tracks
db.deleteMarkers(type=marker_type)
db.deleteMarkers(type=marker_type2)
db.deleteMarkers(type=marker_type3)
db.deleteMarkers(type=marker_type4)

db.deleteTracks(type=marker_type2)
db.deleteTracks(type=marker_type4)



# Start Iteration over Images
print('Starting Iteration')
images = db.getImageIterator(start_frame=20)#start_frame=start_frame, end_frame=3)
# images = db.getImageIterator(start_frame=10272, end_frame=10311)#start_frame=start_frame, end_frame=3)

start = time()
for image in images:
    print(time()-start)
    start = time()
    i = image.get_id()
コード例 #3
0
if db.getMarkerType(name="PT_Prediction_Marker"):
    PT_Prediction_Type = db.getMarkerType(name= "PT_Prediction_Marker")
else:
    PT_Prediction_Type = db.setMarkerType(name="PT_Prediction_Marker", color="#0000FF")
if db.getMarkerType(name="PT_Stitch_Marker"):
    PT_Stitch_Type = db.getMarkerType(name="PT_Stitch_Marker")
else:
    PT_Stitch_Type = db.setMarkerType(name="PT_Stitch_Marker", color="#FF8800", mode=db.TYPE_Track)

# Delete Old Tracks
db.deleteMarkers(type=PT_Detection_Type)
db.deleteMarkers(type=PT_Track_Type)
db.deleteMarkers(type=PT_Prediction_Type)
db.deleteMarkers(type=PT_Stitch_Type)

db.deleteTracks(type=PT_Track_Type)
db.deleteTracks(type=PT_Stitch_Type)

# Start Iteration over Images
print('Starting Iteration')

from multiprocessing import Process,Queue,Pipe

# segmentation_queue = Queue(10)
Image_write_queue = Queue()
SegMap_write_queue = Queue()
Detection_write_queue = Queue()
Track_write_queue = Queue()

segmentation_pipe_in, segmentation_pipe_out = Pipe()
detection_pipe_in, detection_pipe_out = Pipe()
コード例 #4
0
    marker_type3 = db.setMarkerType(name="PT_Prediction_Marker",
                                    color="#0000FF")
if db.getMarkerType(name="PT_Stitch_Marker"):
    marker_type4 = db.getMarkerType(name="PT_Stitch_Marker")
else:
    marker_type4 = db.setMarkerType(name="PT_Stitch_Marker",
                                    color="#FF8800",
                                    mode=db.TYPE_Track)

# Delete Old Tracks
db.deleteMarkers(type=marker_type)
db.deleteMarkers(type=marker_type2)
db.deleteMarkers(type=marker_type3)
db.deleteMarkers(type=marker_type4)

db.deleteTracks(type=marker_type2)
db.deleteTracks(type=marker_type4)

# Start Iteration over Images
print('Starting Iteration')
images = db.getImageIterator(
    start_frame=10)  #start_frame=start_frame, end_frame=3)

for image in images:
    start = time()
    i = image.get_id()

    # Prediction step
    MultiKal.predict(u=np.zeros((model.Control_dim, )).T, i=i)

    # Segmentation step