コード例 #1
0
ファイル: Main.py プロジェクト: ridouaneg/Big-Brother
        print('     ---- Detection stage   ----     ')

        print('Face detection')
        face_bboxes, face_bboxes_confidences = face_det_tracker.predict(image)
        res_face_detection = face_det_tracker.get_result()
        #face_detector.visualize(image, face_bboxes, face_bboxes_confidences, color=(0, 0, 255))

        print('Initialize tracking...')
        multi_faces_tracker.initialize(image, face_bboxes)

        print('Facial landmarks estimation')
        facial_landmarks, facial_landmarks_confidences = facial_landmarks_estimator.predict(image, face_bboxes, face_bboxes_confidences)
        res_facial_landmarks_estimation = facial_landmarks_estimator.get_result()
        #facial_landmarks_estimator.visualize(image, facial_landmarks, facial_landmarks_confidences, color=(0, 0, 255))

        pipeline.match(res_face_detection.bounding_boxes, res_facial_landmarks_estimation.facial_landmarks)

        pipeline.visualize(image)
        cv2.putText(image, 'Detection stage', (5, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255))


    elif pipeline.regime == 'tracking':
        print('     ---- Tracking stage    ----     ')

        print('Face tracking')
        face_bboxes, face_bboxes_confidences = multi_faces_tracker.update(image)
        #face_detector.visualize(image, face_bboxes, face_bboxes_confidences, color=(0, 255, 0))

        print('Facial landmarks estimation')
        facial_landmarks, facial_landmarks_confidences = facial_landmarks_estimator.predict(image, face_bboxes, face_bboxes_confidences)
        #facial_landmarks_estimator.visualize(image, facial_landmarks, facial_landmarks_confidences, color=(0, 255, 0))
コード例 #2
0
                image, face_bboxes, face_bboxes_confidences)
            res_facial_emotion_classification = facial_emotion_classifier.get_result(
            )
            #facial_emotion_classifier.visualize(image, facial_emotions, facial_emotions_confidences)

        if action_recognition:
            print('Action classification')
            action_classifier.predict(image)
            #action_classifier.predict(res_humans)
            #res_action_recognition = action_classifier.get_result()
            #actions, actions_confidences = res_action_recognition.convert_to_list()
            #action_classifier.visualize(image)

        pipeline.match(res_human_detection.bounding_boxes, \
                       res_poses_estimation.poses, \
                       res_face_detection.bounding_boxes, \
                       res_facial_landmarks_estimation.facial_landmarks, \
                       res_facial_emotion_classification.facial_emotions)

        pipeline.visualize(image)
        cv2.putText(image, 'Detection stage', (5, 25),
                    cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0))

        pipeline.update_regime()

    elif pipeline.regime == 'tracking':

        print('     ---- Tracking stage ----     ')

        #if len(multi_human_tracker.trackers) == 0:
        #    pass