コード例 #1
0
def alignDependingOnWithDuration(URIrecordingNoExt, whichSection, pathToComposition, withDuration, withSynthesis, evalLevel, params, usePersistentFiles, htkParser):
    '''
    call alignment method depending on whether duration or htk  selected 
    '''

    Phonetizer.initLookupTable(withSynthesis)
    
    tokenLevelAlignedSuffix, phonemesAlignedSuffix = determineSuffix(withDuration, withSynthesis, evalLevel)
    
    
    if withDuration:
        alignmentErrors, detectedWordList, grTruthDurationWordList = alignOneChunk(URIrecordingNoExt, pathToComposition, whichSection, htkParser, params, evalLevel, usePersistentFiles)
        
            
    else:
        URIrecordingAnno = URIrecordingNoExt + ANNOTATION_EXT
        URIrecordingWav = URIrecordingNoExt + AUDIO_EXTENSION
        # new makamScore used
        lyricsObj = loadLyrics(pathToComposition, whichSection)
        lyrics = lyricsObj.__str__()
#         in case  we are at no-lyrics section
        if not lyrics or lyrics =='_SAZ_':
            logger.warn("skipping section {} with no lyrics ...".format(whichSection))
            return [], [], [], []
    
        outputHTKPhoneAlignedURI = Aligner.alignOnechunk(MODEL_URI, URIrecordingWav, lyrics.__str__(), URIrecordingAnno, '/tmp/', withSynthesis)
        alignmentErrors = evalAlignmentError(URIrecordingAnno, outputHTKPhoneAlignedURI, evalLevel)
        detectedWordList = outputHTKPhoneAlignedURI
        grTruthDurationWordList = []
    
    # store decoding results in a file FIXME: if with duration it is not mlf 
    detectedAlignedfileName = []
    detectedAlignedfileName =  tokenList2TabFile(detectedWordList, URIrecordingNoExt, tokenLevelAlignedSuffix)
        
    return alignmentErrors, detectedWordList, grTruthDurationWordList, detectedAlignedfileName
コード例 #2
0
def test_oracle_jingju(URIrecordingNoExt,  whichSentence, fromPhonemeIdx, toPhonemeIdx):
    '''
    read phoneme-level ground truth and test with dan-xipi_02
    '''
    
    ANNOTATION_EXT = '.TextGrid'
    listSentences = divideIntoSentencesFromAnno(URIrecordingNoExt + ANNOTATION_EXT) #uses TextGrid annotation to derive structure. TODO: instead of annotation, uses score
    
    withSynthesis = False
    currSentence = listSentences[whichSentence]
    
    # consider only part of audio
  
    fromTs = currSentence[0]
    toTs = currSentence[1]

    
    lyrics = loadLyricsFromTextGridSentence(currSentence)
    
    tokenLevelAlignedSuffix = '.syllables_oracle'
    detectedAlignedfileName = URIrecordingNoExt + '_' + str(fromTs) + '_' + str(toTs) + '_'  + tokenLevelAlignedSuffix
    
    if os.path.isfile(detectedAlignedfileName):
        print "{} already exists. No decoding".format(detectedAlignedfileName)
        
        from Utilz import readListOfListTextFile
        detectedTokenList  = readListOfListTextFile(detectedAlignedfileName)
        
    else:
        detectedTokenList = decodeWithOracle(lyrics, URIrecordingNoExt, fromTs, toTs, fromPhonemeIdx, toPhonemeIdx)
          
        if not os.path.isfile(detectedAlignedfileName):
            from PraatVisualiser import tokenList2TabFile
            detectedAlignedfileName =  tokenList2TabFile(detectedTokenList, URIrecordingNoExt, tokenLevelAlignedSuffix)
          
    # eval on phrase level
    evalLevel = 2
    
    fromSyllable = currSentence[2]
    toSyllable = currSentence[3]
    

    correctDuration, totalDuration = _evalAccuracy(URIrecordingNoExt + ANNOTATION_EXT, detectedTokenList, evalLevel, fromSyllable, toSyllable )
    print "accuracy= {}".format(correctDuration / totalDuration)
    
    return detectedTokenList
コード例 #3
0
def mlfResult2TextGrid(argv):
    '''
    open mlf in praat. 
    '''
    if len(argv) != 3 :
            print ("  usage: {}  <detectedHTK_URI> <whichLevel>".format(argv[0]) )
            sys.exit();
    detectedHTK_URI= argv[1]
    whichEvalLevel =  int(argv[2])
    
    tokenAlignedSuffix, dummy = determineSuffixOld(withDuration=False, withSynthesis='dummy', evalLevel=whichEvalLevel)
    
    # load result from file into python list
    detectedTokenList = loadDetectedTokenListFromMlf( detectedHTK_URI, whichEvalLevel )
    
        # write to tsv file.  praat can open only tsv-s
    baseNameAudioFile = os.path.splitext(detectedHTK_URI)[0]
    tokenAlignedfileName =  tokenList2TabFile(detectedTokenList, baseNameAudioFile, tokenAlignedSuffix)
    
    tab2PraatAndOpenWithPRaat(['dummy', tokenAlignedfileName])