def normalizedXcorr(a, b): std = N.std(a) * N.std(b) a_ = (a - N.mean(a)) / std b_ = (b - N.mean(b)) / std c = F.convolve(a_, b_, conj=1) # / a.size return c
def normalizedXcorr(a, b): std = N.std(a) * N.std(b) a_ = (a - N.mean(a)) / std b_ = (b - N.mean(b)) / std c = F.convolve(a_, b_, conj=1)# / a.size return c
def arr_edgeFilter(img, sigma=1.5): """ average-deviation with a gaussian prefilter img must be in an even shape """ if sigma: g = gaussianArrND(img.shape, sigma) g = F.shift(g) img = F.convolve(img.astype(N.float32), g) gr = N.gradient(img.astype(N.float32)) ff = N.sum(N.power(gr, 2), 0) return ff