numPts = 30 # How many eval points for each conditional print('Test Limit = ', lim, 'standard deviations from mean') print('Dimensions = ', dims, '. Conditionals = ', dims - 1) print('Number of points to test for each conditional = ', numPts) N = prob.N cond = 'B' target = 'A2' R1 = RKHS(prob.ds, delta=None, includeVars=[target, cond], s=smoothness) # Do some general assessment of cumulative probabilities # Do some univariate CDF calculations. F is normal(0,1) R0_1 = RKHS(prob.ds, includeVars=['F'], s=smoothness) for v in [-4, -3, -2, -1, 0, 1, 2, 3, 4]: psR = prob.P(('F', None, v)) print('cdf(', v, ') = ', R0_1.CDF(v), psR) # Now some 2-D single conditional evals A2std = .3 for v2 in [-1 * A2std, 0, 1 * A2std]: for v1 in [-4, -3, -2, -1, 0, 1, 2, 3, 4]: exp = 1 / (1 + e**(-v2 / A2std)) ps = prob.P(('A2', None, v2 + tanh(v1)), ('B', v1)) jp = R1.condCDF([v2 + tanh(v1), v1]) #ps = prob.P([('A2', None, v2+tanh(v1)), ('B', None, v1)]) #jp = R1.CDF([v2+tanh(v1),v1]) print('cdf(A2 =', v2, '| B =', v1, ')(jp, ps, exp) = ', jp, ps, exp) #print('A: mean, std, range, incr = ', amean, astd, arange, aincr) evaluations = 0 start = time.time()
def run(filename): r = getData.DataReader(filename) dat = r.read() ps = ProbSpace(dat, density=1, power=1) start = time.time() print() print('Testing probability module.') print() print('Testing basic statistics for various types of distribution:') print('stats(A) = ', ps.fieldStats('A')) print('stats(C) = ', ps.fieldStats('C')) a = ps.distr('A') mean = a.mean() std = a.stDev() print('stats(dice1): mean, std, skew, kurtosis, median, mode = ', mean, std, a.skew(), a.kurtosis(), ' Exp: (3.5, ?, 0, ?)') c = ps.distr('C') print('stats(d1 + d2): mean, std, skew, kurtosis, median, mode = ', c.E(), c.stDev(), c.skew(), c.kurtosis(), c.median(), c.mode(), ' Exp: (7, ?, 0, ?, 7, 7)') d = ps.distr('EXP') print('stats(Exponential): mean, std, skew, kurtosis = ', d.E(), d.stDev(), d.skew(), d.kurtosis(), ' Exp: (1, 1, 2, 6)') d = ps.distr('IVB') print('stats(Logistic): mean, std, skew, kurtosis = ', d.E(), d.stDev(), d.skew(), d.kurtosis(), ' Exp: (0, 1.8138, 0, 1.2)') d = ps.distr('N') print('stats(Normal): mean, std, skew, kurtosis, median = ', d.E(), d.stDev(), d.skew(), d.kurtosis(), d.median(), 'Exp: (0, 1, 0, 0)') d = ps.distr('N2') print('stats(N2: sum of normals): mean, std, skew, kurtosis = ', d.E(), d.stDev(), d.skew(), d.kurtosis(), 'Exp: (1, 1.414, 0, 0)') print() print( 'Testing discrete deterministic probabilities (2-dice -- ala Craps):') print('A is Die #1. B is Die #2. C is the total of the 2 dice.') print('E(B) = ', ps.distr('B').E(), ' Exp: 3.5') print('P(B=0) = ', ps.P(('B', 0)), ' Exp: 0') print('P(B=1) = ', ps.P(('B', 1)), ' Exp: 1/6 = .166...') print('P(B=2) = ', ps.P(('B', 2)), ' Exp: 1/6 = .166...') print('P(B >= 0) = ', ps.P(('B', 0, None)), ' Exp: 1.0') print('P(B < 0) = ', ps.P(('B', None, 0)), ' Exp: 0.0') print('P(-inf <= B > inf) = ', ps.P(('B', None, None)), ' Exp: 1.0') print('P(-1 <= B < 3) = ', ps.P(('B', -1, 3)), ' Exp: 1/3') print('P(C = 2) =', ps.P(('C', 2)), ' Exp: 1/36 = .0277...') print('P(C = 3) =', ps.P(('C', 3)), ' Exp: 1/18 = .055...') print('P( 2 <= C < 4) = ', ps.P(('C', 2, 4)), ' Exp: 3/36 = .0833...') print('P( 2 <= C < 4 | A = 1) = ', ps.P(('C', 2, 4), ('B', 1)), ' Exp: 1/3') print('P( C = 7) = ', ps.P(('C', 7)), ' Exp: 1/6 = .166...') print('P( C = 7 | A = 1, B = 6) = ', ps.P(('C', 7), [('A', 1), ('B', 6)]), ' Exp: 1.0') print('P( C = 7 | A >= 2, B < 5) = ', ps.P(('C', 7), [('A', 2, None), ('B', None, 5)]), ' Exp: 1/5 = .2') print('P(-inf <= A < inf | B >= 1) = ', ps.P(('A', None, None), ('B', 1, None)), ' Exp: 1.0') print('P( A >= 3, B >= 3) = ', ps.P([('A', 3, None), ('B', 3, None)]), 'Exp: 4/9 (.444...)') print('P( C = 7, A = 5) = ', ps.P([('C', 7), ('A', 5)]), ' Exp: 1/36 (.0277...)') print('P( C = 7, A >= 5) = ', ps.P([('C', 7), ('A', 5, None)]), ' Exp: 1/18 (.0555...)') print('P( A = 2 | B = 5, C= 7) = ', ps.P(('A', 2), [('B', 5), ('C', 7)]), ' Exp: 1.0') print('P( B = 5, C= 7) = ', ps.P(('B', 5), ('C', 7)), ' Exp: 1/6 (.166...)') print('P( A = 2, B = 5) = ', ps.P([('A', 2), ('B', 5)]), ' Exp: 1/36 (.0277...)') print('P( A = 2, B = 5 | C = 7) = ', ps.P([('A', 2), ('B', 5)], ('C', 7)), ' Exp: 1/6 (.166...)') print('P( A = 2, B = 5, N < 0| C = 7) = ', ps.P([('A', 2), ('B', 5), ('N', None, 0)], ('C', 7)), ' Exp: 1/12 (.08333...)') print('E( C | A = 1, B = 6) = ', ps.distr('C', [('A', 1), ('B', 6)]).E(), ' Exp: 7') print('E( C | A = 1, B >= 5) = ', ps.distr('C', [('A', 1), ('B', 5, None)]).E(), ' Exp: 6') print() print('Testing continuous distributions. Using N = normal(0, 1)') n = ps.distr('N') mu1 = n.mean() mu2 = n.stDev() print('stats(N): mean, std, skew, kurtosis = ', mu1, mu2, n.skew(), n.kurtosis(), 'Exp: (0, 1, 0, 0)') print('P( -1 >= N > 1) = ', n.P((-1, 1)), 'Exp: .682') print('P( -2 >= N > 2) = ', n.P((-2, 2)), 'Exp: .954') print('P( -3 >= N > 3) = ', n.P((-3, 3)), 'Exp: .997') print('P( -inf >= N > 0) = ', n.P((None, 0)), 'Exp: .5') print('P( 0 >= N > inf) = ', n.P((0, None)), 'Exp: .5') print('P( -inf >= N > inf) = ', n.P((None, None)), 'Exp: 1.0') print('E( N2 | N = 1) = ', ps.distr('N2', ('N', 1)).E(), ' Exp: 2.0') print('E( N2 | 1 <= N < 2) = ', ps.distr('N2', ('N', 1, 2)).E()) print() print('Dependence testing. Note: values < .5 are considered independent') print('A _||_ B = ', ps.dependence('A', 'B'), ' Exp: < .5') print('A _||_ C = ', ps.dependence('A', 'C'), ' Exp: > .5') print('B _||_ C = ', ps.dependence('B', 'C'), ' Exp: > .5') print('N _||_ N2 = ', ps.dependence('N', 'N2'), ' Exp: > .5') print('N _||_ C = ', ps.dependence('N', 'C'), ' Exp: < .5') print('C _||_ N = ', ps.dependence('C', 'N'), ' Exp: < .5') print('A _||_ B | C >= 8 = ', ps.dependence('A', 'B', [('C', 8, None)]), ' Exp: > .5') print('A _||_ B | C < 7 = ', ps.dependence('A', 'B', [('C', None, 7)]), ' Exp: > .5') print('A _||_ B | C = 7 = ', ps.dependence('A', 'B', [('C', 7)]), ' Exp: > .5') print('A _||_ B | C = 6 = ', ps.dependence('A', 'B', [('C', 6)]), ' Exp: > .5') print('A _||_ B | C = 5 = ', ps.dependence('A', 'B', [('C', 5)]), ' Exp: > .5') print('A _||_ B | C = 4 = ', ps.dependence('A', 'B', [('C', 4)]), ' Exp: > .5') print('A _||_ B | C = 3 = ', ps.dependence('A', 'B', [('C', 3)]), ' Exp: > .5') print('A _||_ B | C = 2 = ', ps.dependence('A', 'B', [('C', 2)]), ' Exp: < .5') print('A _||_ B | C = 12 = ', ps.dependence('A', 'B', [('C', 12)]), ' Exp: < .5') print('A _||_ B | C = ', ps.dependence('A', 'B', ['C']), ' Exp: > .5') print() print('Independence testing (values > .5 are considered independent):') print('A _||_ B = ', ps.independence('A', 'B'), ps.isIndependent('A', 'B'), ' Exp: > .5, True') print('A _||_ C = ', ps.independence('A', 'C'), ps.isIndependent('A', 'C'), ' Exp: < .5, False') print('A _||_ B | C = ', ps.independence('A', 'B', 'C'), ps.isIndependent('A', 'B', 'C'), ' Exp: < .5, False') print('A _||_ N = ', ps.independence('A', 'N'), ps.isIndependent('A', 'N'), ' Exp: > .5, True') print() print('Testing Conditionalization:') ivaDist = ps.distr('IVA') ivaMean = ivaDist.E() ivaStd = ivaDist.stDev() upper = ivaMean + .5 * ivaStd lower = ivaMean - .5 * ivaStd diff = upper - lower pwr = 2 print('test interval = ', upper - lower) ivcGupper = ps.E('IVC', ('IVA', upper), power=pwr) print('E( IVC | IVA = upper)', ivcGupper) ivcGlower = ps.E('IVC', ('IVA', lower), power=pwr) print('E( IVC | IVA = upper)', ivcGupper) print('E( IVC | IVA = lower)', ivcGlower) ivcGupper = ps.E('IVC', [('IVA', upper), 'IVB'], power=pwr) print('E( IVC | IVA = upper, IVB)', ivcGupper) ivcGlower = ps.E('IVC', [('IVA', lower), 'IVB'], power=pwr) print('E( IVC | IVA = lower, IVB)', ivcGlower) print('ACE(A,C) = ', (ivcGupper - ivcGlower) / diff, ' Exp: ~ 0') print() print('Testing continuous causal dependence:') print('IVB _||_ IVA = ', ps.dependence('IVB', 'IVA'), ' Exp: > .5') print('IVA _||_ IVB = ', ps.dependence('IVA', 'IVB'), ' Exp: > .5') print('IVB _||_ IVC = ', ps.dependence('IVB', 'IVC'), ' Exp: > .5') print('IVA _||_ IVC = ', ps.dependence('IVA', 'IVC'), ' Exp: > .5') print('IVA _||_ IVC | IVB = ', ps.dependence('IVA', 'IVC', 'IVB'), ' Exp: < .5') print('IVA _||_ IVC | IVB, N = ', ps.dependence('IVA', 'IVC', ['IVB', 'N']), ' Exp: < .5') print() print('Testing Bayesian Relationships:') # P(C=7 | A=5) = P(A=5|C=7) * P(A=5) / P(C=7) pA_C = ps.P(('A', 5), ('C', 7)) pA = ps.P(('A', 5)) pC = ps.P(('C', 7)) pC_A = ps.P(('C', 7), ('A', 5)) invpC_A = pA_C * pA / pC err = abs(invpC_A - pC_A) print( 'Inverse P(A=5 | C=7) vs measured (Bayes(P(A | C)), P(A | C), diff): ', invpC_A, pC_A, err, ' Exp: ~ 0') # P(0 <= IVB < 1 | 1 <= IVA < 2) = P(1 <= IVA < 2 | 0 <= IVB < 1) * P(0 <= IVB < 1) / P(1 <= IVA < 2) pA_B = ps.P(('IVA', 1, 2), ('IVB', 0, 1)) pB = ps.P(('IVB', 0, 1)) pA = ps.P(('IVA', 1, 2)) pB_A = ps.P(('IVB', 0, 1), ('IVA', 1, 2)) invpB_A = pA_B * pB / pA err = abs(invpB_A - pB_A) print( 'Inverse P(0 <= IVB < 1 | 1 <= IVA < 2) vs measured (Bayes(P(IVB | IVA)), P(IVB | IVA), diff): ', invpB_A, pB_A, err, ' Exp: ~ 0') print() print('Testing Prediction and Classification:') testDat = {'A': [2, 3, 6], 'B': [5, 2, 6]} predDat = ps.Predict('C', testDat) for p in range(len(predDat)): val = predDat[p] a = testDat['A'][p] b = testDat['B'][p] print('Prediction(C) for A = ', a, ', B = ', b, ', = pred(C) = ', val, ' Exp:', a + b) predDat = ps.Classify('C', testDat) for p in range(len(predDat)): val = predDat[p] a = testDat['A'][p] b = testDat['B'][p] print('Classification(C) for A = ', a, ', B = ', b, ', = pred(C) = ', val, ' Exp:', a + b) testDat = {'N': [.5, 1, 1.5, 2, 2.5, 3], 'B': [1, 2, 3, 4, 5, 6]} predDists = ps.PredictDist('N2', testDat) for p in range(len(predDists)): d = predDists[p] n = testDat['N'][p] b = testDat['B'][p] print('Prediction(N2) for N = ', n, ', B = ', b, ', = pred(N2 (mean, std)) = ', d.E(), d.stDev(), ' Exp:', n + 1, ', 1') print() end = time.time() duration = end - start print('Test Time = ', round(duration))