veri_dir = ScriptTestDataset(dir=args.train_dir, loader=file_loader, transform=transform_T, return_uid=True) veri_dir.partition(args.sample_utt) test_dir = ScriptTestDataset(dir=args.test_dir, loader=file_loader, transform=transform_T, return_uid=True) test_dir.partition(args.sample_utt) valid_dir = ScriptValidDataset(valid_set=train_dir.valid_set, spk_to_idx=train_dir.spk_to_idx, valid_uid2feat=train_dir.valid_uid2feat, valid_utt2spk_dict=train_dir.valid_utt2spk_dict, loader=file_loader, transform=transform, return_uid=True) indices = list(range(len(valid_dir))) random.shuffle(indices) indices = indices[:args.sample_utt] valid_part = torch.utils.data.Subset(valid_dir, indices) # sitw_test_dir = SitwTestDataset(sitw_dir=args.sitw_dir, sitw_set='eval', transform=transform_T, return_uid=False) # indices = list(range(len(sitw_test_dir))) # random.shuffle(indices) # indices = indices[:args.sample_utt] # sitw_test_part = torch.utils.data.Subset(sitw_test_dir, indices) # # sitw_dev_dir = SitwTestDataset(sitw_dir=args.sitw_dir, sitw_set='dev', transform=transform_T, return_uid=False)
transform = ConcateNumInput(num_frames=args.num_frames, remove_vad=args.remove_vad) if args.feat_format == 'npy': file_loader = np.load elif args.feat_format in ['kaldi', 'klfb']: file_loader = kaldi_io.read_mat train_dir = ScriptTrainDataset(dir=args.data_dir, samples_per_speaker=args.input_per_spks, loader=file_loader, transform=transform, num_valid=args.num_valid, domain=args.domain) # train_dir = LoadScriptDataset(dir=args.data_dir, samples_per_speaker=args.input_per_spks, loader=file_loader, # transform=transform, num_valid=args.num_valid, domain=args.domain) >>>>>>> Server/Server valid_dir = ScriptValidDataset(valid_set=train_dir.valid_set, loader=file_loader, spk_to_idx=train_dir.spk_to_idx, dom_to_idx=train_dir.dom_to_idx, valid_utt2dom_dict=train_dir.valid_utt2dom_dict, valid_uid2feat=train_dir.valid_uid2feat, valid_utt2spk_dict=train_dir.valid_utt2spk_dict, transform=transform, domain=args.domain) if __name__ == "__main__": np.random.seed(args.seed) torch.manual_seed(args.seed) random.seed(args.seed) <<<<<<< HEAD ======= >>>>>>> Server/Server nj = args.nj data_dir = args.data_dir out_dir = os.path.join(args.out_dir, args.out_set) <<<<<<< HEAD