def show_files(filelist, sleeptime=.6): '''given a list of files, it shows all those images (Doesn't yet work for color images''' plt.figure() loadtimelist = [] if type(filelist) is not list: filelist = [filelist] for i in xrange(len(filelist)): fname = filelist[i] t = time.time() name = fname[fname.rfind('/'):fname.rfind('.')] Im = cc.LoadTIFF(fname, ca.MEM_HOST) print name, i cd.DispImage(Im, newFig=False, title=name) p = Popen(['xsel', '-pi'], stdin=PIPE) p.communicate(input="'" + name + ".png'" + ',\n') loadtime = time.time() - t loadtimelist.append(loadtime) time.sleep(sleeptime)
# mType=ca.MEM_HOST mType = ca.MEM_DEVICE ds = 2 else: mType = ca.MEM_DEVICE ds = 1 plt.close('all') # Rigid Reg parameters theta_step = 0 t_step = 300 a_step = 0 maxIter = 2000 Imprev = cc.LoadTIFF(filelist[0], mType, ds) origin = [(Imprev.grid().size().x+1)/2.0, # origin for Affine matrix (Imprev.grid().size().y+1)/2.0, (Imprev.grid().size().z+1)/2.0] scratchI = ca.Image3D(Imprev.grid(), Imprev.memType()) scratchI2 = ca.Image3D(Imprev.grid(), Imprev.memType()) # initialize dictionary Adict = {'origin': origin} Adict[files.get_file_dist(filelist[0])] = np.identity(3) # if 'block1' in filelist[0]: # move first image in block 1 if block == 1: tcentx, tcenty = cc.CenterImage(Imprev) ca.Copy(scratchI, Imprev)
plt.ion() plt.close('all') import PyCA.Common as common from PyCAApps import ElastReg import matplotlib.mlab as mlab import scipy import matplotlib.patches as patches memT = ca.MEM_DEVICE conDir = '/local/blakez/Backup/M13_01/data/microscopy/confocal/M13_01_B2_43_S5/zslice_tiles_00/C02/' #micDir = '/local/blakez/korenbergNAS/3D_database/Raw/Microscopic/Confocal/M13/M13-01-B2-10-S3/2016_10_13_17_45_10--M13-01-B2-10-S3 5x tiling/' #micOut = '/home/sci/blakez/M13_01/results/microscopic/intensityCorrected/test/' image = cc.LoadTIFF(conDir + 'M13-01-B2-43-S5-C2_Z0_tile_000.tif', memT) stack = np.zeros((512, 512, 420), dtype='uint8') for ii in range(0, 420): image = plt.imread( conDir + 'M13-01-B2-43-S5-C2_Z0_tile_{0}.tif'.format(str(int(ii)).zfill(3)), memT) stack[:, :, ii] = image fMask = ( stack > 1 ) # Can Adjust what is considered background by changing the comparison number f = stack * fMask m = np.sum(f, axis=2, dtype='float') / np.sum(fMask, axis=2, dtype='float')