def do_check(self, pot, **kwargs): cgd = CGDescent(_xrand, pot, **kwargs) res = cgd.run() self.assertAlmostEqual(res.energy, _emin, 4) self.assertTrue(res.success) self.assertLess(np.max(np.abs(res.coords - _xmin)), 1e-2) self.assertGreater(res.nfev, 0)
def test_reset(self): cgd1 = CGDescent(self.x0, self.pot) cgd1.run() res1 = cgd1.get_result() x2 = self.x0.copy() x2[1] = 2. cgd2 = CGDescent(x2, self.pot) cgd2.reset(self.x0) cgd2.run() res2 = cgd2.get_result() self.assertEqual(res1.rms, res2.rms) self.assertEqual(res1.nfev, res2.nfev) self.assertEqual(res1.nsteps, res2.nsteps) self.assertTrue(np.all(res1.coords == res2.coords))
def quench_pycg_descent(pot, x0, nsteps=2000, **kwargs): """ "subroutine" for quenching using cvode. Parameters ---------- pot: BasePotential potential to quench x0: ndarray[ndim*nparticles] initial coordinates nsteps: int maximum number of steps """ cgd = CGDescent(pot, x0, **kwargs) res = cgd.run(nsteps) return res_to_dict(res)
def test_result(self): cgd = CGDescent(_xrand, _EG()) res = cgd.run() self.assertIn("gnorm", res) self.assertIn("itersub", res) self.assertIn("numsub", res) self.assertIn("nfunc", res) self.assertIn("ngrad", res) self.assertIn("energy", res) self.assertIn("grad", res) self.assertIn("success", res) self.assertIn("coords", res) self.assertIn("rms", res) self.assertIn("nsteps", res) self.assertIn("nfev", res)
def test_raises(self): pot = _lj_cpp._ErrorPotential() with self.assertRaises(RuntimeError): cgd = CGDescent(_xrand, pot) cgd.run()
def test_run_niter(self): cgd1 = CGDescent(_xrand, _EG()) res1 = cgd1.run() cgd2 = CGDescent(_xrand, _EG()) res2 = cgd2.run(res1.nsteps) self.assert_same(res1, res2)
def test_raises(self): with self.assertRaises(NotImplementedError): cgd = CGDescent(_xrand, _Raise()) cgd.run()