コード例 #1
0
NXlist = [64, 128, 256, 256, 512]
NZlist = [32, 64, 128, 128, 256]
ddlist = [0.01, 0.005, 0.0025, 0.001, 0.00075]

for ddindex in range(0, len(ddlist)):
    NX = NXlist[ddindex]
    NZ = NZlist[ddindex]

    # Density profile for this wave with specified d_d
    d_d = ddlist[ddindex]
    rho = lambda z: frho(z, d_d)
    intrho = lambda z: fintrho(z, d_d)
    rhoz = lambda z: frhoz(z, d_d)

    if ddindex == 0:
        djl = DJL(A, L, H, NX, NZ, rho, rhoz, intrho=intrho, relax=0.15)
    else:
        djl = DJL(A,
                  L,
                  H,
                  NX,
                  NZ,
                  rho,
                  rhoz,
                  intrho=intrho,
                  relax=0.15,
                  initial_guess=djl)

# Reduce epsilon, iterate to convergence
djl = DJL(A,
          L,
コード例 #2
0
ファイル: case_synthetic_data.py プロジェクト: golnazir/PyDJL
# Find the solution
start_time = time.time()

#djl = DJL(A, L, H, NX, NZ, rho, rhoz)

# Now solve DJL, bringing in the background velocity incrementally
for ii, alpha in enumerate(numpy.linspace(0,1,4)):
    # Velocity profiles
    Ubg   = lambda z: alpha * Utarget  (z)
    Ubgz  = lambda z: alpha * Utargetz (z)
    Ubgzz = lambda z: alpha * Utargetzz(z)
    
    # Use a larger epsilon for these intermediate waves
    # Iterate the DJL solution
    if ii == 0:
        djl = DJL(A, L, H, NX, NZ, rho, rhoz, epsilon = 1e-3, Ubg=Ubg, Ubgz = Ubgz, Ubgzz=Ubgzz)
    else:
        djl = DJL(A, L, H, NX, NZ, rho, rhoz, epsilon = 1e-3, Ubg=Ubg, Ubgz = Ubgz, Ubgzz=Ubgzz, initial_guess=djl)


# Increase resolution, restore default epsilon, iterate to convergence
NX, NZ =64, 64
 # clear epsilon
djl = DJL(A, L, H, NX, NZ, rho, rhoz, Ubg=Ubg, Ubgz = Ubgz, Ubgzz=Ubgzz, initial_guess = djl)

# Increase resolution, iterate to convergence
NX, NZ =128, 128
djl = DJL(A, L, H, NX, NZ, rho, rhoz, Ubg=Ubg, Ubgz = Ubgz, Ubgzz=Ubgzz, initial_guess = djl)

# Increase to the final resolution, iterate to convergence
NX, NZ = 512,256
コード例 #3
0
ファイル: case_amazon.py プロジェクト: golnazir/PyDJL
fUbgzz = lambda z: interpolate.interp1d(
    zdata, uzzdata, fill_value="extrapolate")(z)

# Now we have data, prepare for DJLES
L, H = 600, 80  # domain width (m) and depth (m)
rho0 = 1000  # reference density (kg/m^3)
#verbose = 1;

start_time = time.time()

# Start at low resolution/epsilon, no background velocity, and raise amplitude
NX, NZ = 32, 32
A1, A2 = 1e5, 1e6
for ii, A in enumerate(numpy.linspace(A1, A2, 3)):
    if ii == 0:
        djl = DJL(A, L, H, NX, NZ, rho, rhoz, rho0=rho0, epsilon=1e-3)
    else:
        djl = DJL(A,
                  L,
                  H,
                  NX,
                  NZ,
                  rho,
                  rhoz,
                  rho0=rho0,
                  epsilon=1e-3,
                  initial_guess=djl)

# Improve resolution, raise amplitude
NX, NZ = 64, 64
A1, A2 = 1e6, 5e6
コード例 #4
0
ファイル: case_pineda.py プロジェクト: golnazir/PyDJL
rhoz = lambda z: interpolate.interp1d(zdata, rhozdata)(z)

L, H = 1200, 57  # domain width (m) and depth(m), estimated from Pineda et al's Figure 9 (a)

############################################################################
#### Find the wave showcased in Pineda et al. (2015) Figure 11 #############
############################################################################
start_time = time.time()

# Set initial resolution and large epsilon for intermediate waves
NX, NZ = 32, 32

# Raise amplitude in a few increments
for ii, A in enumerate(numpy.linspace(1e4, 3.62e5, 6)):  # APE (kg m/s^2)
    if ii == 0:
        djl = DJL(A, L, H, NX, NZ, rho, rhoz, rho0=rho0, epsilon=1e-3)
    else:
        djl = DJL(A,
                  L,
                  H,
                  NX,
                  NZ,
                  rho,
                  rhoz,
                  rho0=rho0,
                  epsilon=1e-3,
                  initial_guess=djl)

# Increase resolution, reduce epsilon, iterate to convergence
NX, NZ = 64, 64
djl = DJL(A,
コード例 #5
0
ファイル: case_ubg.py プロジェクト: golnazir/PyDJL
rho = lambda z: 1 - a_d * numpy.tanh((z + z0_d) / d_d)
intrho = lambda z: z - a_d * d_d * numpy.log(numpy.cosh((z + z0_d) / d_d))
rhoz = lambda z: -(a_d / d_d) * (1.0 / numpy.cosh((z + z0_d) / d_d)**2)

# Specify general velocity profile that takes U0 as a second parameter (m/s)
zj, dj = 0.5 * H, 0.4 * H
fUbg = lambda z, U0: U0 * numpy.tanh((z + zj) / dj)
fUbgz = lambda z, U0: (U0 / dj) * (1.0 / numpy.cosh((z + zj) / dj)**2)
fUbgzz = lambda z, U0: (-2 * U0 / (dj * dj)) * (1.0 / numpy.cosh(
    (z + zj) / dj)**2) * numpy.tanh((z + zj) / dj)

# Find the solution
start_time = time.time()

#  Create DJL object
djl = DJL(A, L, H, NX, NZ, rho, rhoz, intrho=intrho)

# Start with U0=0, raise it to U0=0.1 over 6 increments
for U0 in numpy.linspace(0, 0.1, 6):
    # Velocity profile for this wave
    djl.Ubg = lambda z: fUbg(z, U0)
    djl.Ubgz = lambda z: fUbgz(z, U0)
    djl.Ubgzz = lambda z: fUbgzz(z, U0)

    # Find the solution of the DJL equation
    # Use a reduced epsilon for these intermediate waves
    djl = DJL(A,
              L,
              H,
              NX,
              NZ,
コード例 #6
0
#verbose=1;
#
# Use python's gradient function to find the derivative drho/dz
rhozdata = numpy.gradient(rhodata, zdata)

# Now build piecewise interpolating polynomials from the data,
# and convert them to function handles for the solver
#rho  = lambda z: interpolate.PchipInterpolator(zdata, rhodata )(z)
#rhoz = lambda z: interpolate.PchipInterpolator(zdata, rhozdata)(z)
rho = lambda z: interpolate.interp1d(zdata, rhodata)(z)
rhoz = lambda z: interpolate.interp1d(zdata, rhozdata)(z)

# Find the solution
start_time = time.time()
djl = DJL(A, L, H, NX, NZ, rho, rhoz, rho0=rho0)

# Increase resolution, iterate to convergence
NX, NZ = 128, 128
djl = DJL(A, L, H, NX, NZ, rho, rhoz, rho0=rho0, initial_guess=djl)

# Increase to the final resolution, iterate to convergence
NX, NZ = 512, 512
djl = DJL(A, L, H, NX, NZ, rho, rhoz, rho0=rho0, initial_guess=djl)

end_time = time.time()
print('Total wall clock time: %f seconds\n' % (end_time - start_time))

# Compute and plot the diagnostics
diag = Diagnostic(djl)
plot(djl, diag, 2)
コード例 #7
0
L, H = 8.0, 0.2  # domain width (m) and depth (m)
NX, NZ = 32, 32  # grid size

# The unitless density profile (normalized by a reference density rho0)
a_d, z0_d, d_d = 0.02, 0.05, 0.01
rho    = lambda z: 1 - a_d * numpy.tanh((z + z0_d) / d_d)
intrho = lambda z: z - a_d * d_d * numpy.log(numpy.cosh((z + z0_d) / d_d))
rhoz   = lambda z: -(a_d / d_d) * (1.0 / numpy.cosh((z + z0_d) / d_d) ** 2)

# Find the solution
start_time = time.time()

# Start with 1% of target APE, raise to target APE in 5 steps
for ii, Ai in enumerate(numpy.linspace(A / 100, A, 5)):
    if ii == 0:
        djl = DJL(Ai, L, H, NX, NZ, rho, rhoz, intrho=intrho)
    else:
        djl = DJL(Ai, L, H, NX, NZ, rho, rhoz, intrho=intrho, initial_guess=djl)

# Increase the resolution, reduce epsilon, and iterate to convergence
NX, NZ = 64, 64
djl = DJL(A, L, H, NX, NZ, rho, rhoz, intrho=intrho, epsilon=1e-5, initial_guess=djl)

# Increase the resolution, and iterate to convergence
NX, NZ = 512,256
djl = DJL(A, L, H, NX, NZ, rho, rhoz, intrho=intrho, epsilon=1e-5, initial_guess=djl)

end_time = time.time()
print('Total wall clock time: %f seconds\n'% (end_time - start_time))

# Compute and plot the diagnostics