コード例 #1
0
iyear = 1981    # Ano inicial
clim_year = 30  # Quantidade de anos
ntime = clim_year * 12
nmon = ntime/clim_year
nyear = ntime/12.

tri = ['JFM', 'FMA', 'MAM', 'AMJ', 'MJJ', 'JJA', 'JAS', 'ASO', 'SON', 'OND', 'NDJ', 'DJF']
ini = ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12']

aux = np.zeros((int(ntime), int(nlat), int(nlon))) ; aux[:] =  np.nan

for k in range(int(ntime)):
    aux[k, :, :] = np.sum(var[k:3+k, :, :], axis=0)

aux = np.where(np.isnan(aux), -999, aux)

# Só um teste
print np.min(aux)
print np.max(aux)

a = aux.reshape(nyear, nmon, nlat, nlon) # 1989: JFM, 1990: JFM...

# ESCREVE NETCDF
for k in range(int(nmon)):
    #~ print k
    fname = output_name + '{0}.nc'.format(tri[k])
    cn.create_netcdf(a[:, k, :, :], lat, lon, fileout=fname, ntime=int(clim_year), varname='precip', vartimeunits='years since 1981-01-01 00:00', varunits='mm', fillvalue=-999, varlongname='Precipitation', ncauthor='Funceme', nccomments='Try to recreat UTEXAS', ncsource='UTEXAS', nchistory='Funceme')



コード例 #2
0
ファイル: run.1dg.jr.py プロジェクト: marcelorodriguesss/FCST
    my_colors = ('#340003', '#ae000c', '#ff2e1b', '#ff5f26', '#ff9d37', '#fbe78a',
                 '#ffffff', '#b0f0f7', '#93d3f6', '#76bbf3', '#4ba7ef', '#3498ed', '#2372c9') #13
    pm.plotmap(anomaly_corrigida[0, :, :], newlats-1./2., newlons-1./2., latsouthpoint=y1, latnorthpoint=y2,
        lonwestpoint=x1, loneastpoint=x2,  fig_name=figname_anom, barloc='right',
        barcolor=my_colors, barlevs=levs, fig_title=figtitle, barinf='both', ocean_mask=1)

    background = Image.open(figname_anom)
    foreground = Image.open("/home/marcelo/FSCT-ECHAM46/FUNCEME_LOGO.png")
    foreground = foreground.resize((90, 70), Image.ANTIALIAS)
    background.paste(foreground, (334, 461), foreground)
    background.save(figname_anom, optimize=True, quality=95)

    ##########  Tercil mais provável para toda a região do globo  ##########
    file_out = "{5}/prob_echam46_issue_{0}{1}_target_{2}{3}_{4}_median.nc".format(fcst_month, fcst_year, target_months, target_year, hind_period, outdir)
    below, normal, above, f_signal, f_std, o_pad, fcst_sig_anom = cs.compute_probability(fcst, hind, obs, n_years)
    cn.create_netcdf_probs(below, normal, above, newlats, newlons, fileout=file_out)

    ##########  Curva para o CE  ##########
    # Retorna matriz com os pontos sobre o Ceará
    shapef = '/home/marcelo/FSCT-ECHAM46/pontos_ce.txt'
    pointsgrid, lonlatgrid, mymatriz = dg.pointinside(newlats, newlons, shapefile=shapef)

    # Aplica máscara para os pontos sobre o Ceará
    points_over_ce_fcst = np.ma.array(fcst[0, :, :], mask=mymatriz)
    points_over_ce_hind = np.ma.array(hind, mask=np.tile(mymatriz, (hind.shape[0], 1)))
    points_over_ce_obs = np.ma.array(obs, mask=np.tile(mymatriz, (obs.shape[0], 1)))

    mean_ce_fcst = np.zeros(1)
    mean_ce_hind = np.zeros(int(n_years))
    mean_ce_obs = np.zeros(int(n_years))
コード例 #3
0
import numpy as np
from scipy.io import FortranFile
from PyFuncemeClimateTools import CreateNetCDF as cn
from decimal import *

lons = [ -55.637 + (0.54 * i) for i in range(109)]
lons = [ float(Decimal("%.2f" % elem)) for elem in lons]

lats = [-21.397, -20.893, -20.387, -19.880, -19.371, -18.861, -18.349, -17.835, -17.320, -16.803,
-16.285, -15.766, -15.246, -14.724, -14.200, -13.676, -13.150, -12.624, -12.096, -11.567,
-11.037, -10.506,  -9.975,  -9.442,  -8.909,  -8.375,  -7.840,  -7.304,  -6.768,  -6.231,
  -5.694,  -5.156,  -4.617,  -4.079,  -3.539,  -3.000,  -2.460,  -1.920,  -1.380,  -0.840,
  -0.300,  0.241,   0.781,   1.321,   1.861,   2.401,   2.941,   3.480,   4.019,   4.558,
   5.097, 5.635,   6.172,   6.709,   7.245,   7.781,   8.316,   8.850,   9.384,   9.916,
  10.448,  10.979,  11.509,  12.038,  12.566,  13.093,  13.618,  14.143,  14.666,  15.188,
  15.709,  16.229]

f = FortranFile('./plev.198811.DAILY.PER11.51', 'r')

myvar = np.full((30, 72, 109), np.nan)

for i in range(30):
    var = (f.read_reals(dtype='float32')).reshape(72, 109)
    myvar[i, ...] = var
    dummy = (f.read_reals(dtype='float32'))

cn.create_netcdf(myvar, lats, lons, ntime=30)

#
コード例 #4
0
    # Faz a média dos trimestres

    # for k in range(int(ntime)):
    #     if k in leep_years:
    #         print "Leep year!", k
    #         aux[k, :, :] = np.nanmean(var[k:3+k, :, :], axis=0) * 90
    #     else:
    #         aux[k, :, :] = np.nanmean(var[k:3+k, :, :], axis=0) * 89

    for k in range(int(ntime)):
        aux[k, :, :] = np.sum(var[k:3+k, :, :], axis=0)

    print np.min(aux)
    print np.max(aux)

    # a = aux.reshape(nmon,nyear,nlat,nlon) # 1989: JFM, FMA, MAM...
    aux = np.where(aux >= 9.96920996838687**36, -999, aux)

    a = aux.reshape(nyear, nmon, nlat, nlon) # 1989: JFM, 1990: JFM...

    # ESCREVE NETCDF
    for k in range(int(nmon)):
        print k
        fname = '/Users/Hulk/obs_pcp/cru/' + output_name[i] + '{0}.nc'.format(tri[k])
        cn.create_netcdf(a[:, k, :, :], lat, lon, fileout=fname, ntime=int(clim_year), varname='pre',
                         vartimeunits='years since 1989-01-01 00:00', varunits='mm', fillvalue=-999)

    # cdo Versão 3
    # cdo genbil,pcp-daily-ec4amip51_2015AMJ.ctl.nc cmap.precip.mon.mean.1981-2010.JFM.2.5dg.nc weights.nc
    # cdo remap,pcp-daily-ec4amip51_2015AMJ.ctl.nc,weights.nc cmap.precip.mon.mean.1981-2010.JFM.2.5dg.nc cmap.precip.mon.mean.1981-2010.JFM.T42.nc
コード例 #5
0
ファイル: rewrite_nc.py プロジェクト: marcelorodriguesss/FCST
        # Arquivo hindcasts
        hind_file = "pcp-daily-total-ec4amip_%s%s.1.0dg.nc" % (hind_period, target_months)
        read_hind_file = pupynere.NetCDFFile(hind_file, 'r')
        hind = read_hind_file.variables['pcp'][:, ::-1, :]
        read_hind_file.close()

        # Arquivo observação
        obs_file = "CMAP.glb.%s-%s-1.0dg.nc" % (hind_period, target_months)
        read_obs_file = pupynere.NetCDFFile(obs_file, 'r')
        obs = read_obs_file.variables['pcp'][:, ::-1, :]
        read_obs_file.close()

        fcst_file_out = "pcp-daily-total-ec4amip_%s%s.1.0dg.fix.nc" % (fcst_year, target_months)
        fcst_shift, lons_fcst_shift = shiftgrid(180., fcst, lons, start=False)
        cn.create_netcdf(fcst_shift, lons_fcst_shift, lats, fileout=fcst_file_out, 
            ntime=1, varlongname='Accum Precip', varunits='mm', 
            vartimeunits='years since 1900-01-01 00:00:00', fillvalue=-999., varname='pcp')

        hind_file_out = "pcp-daily-total-ec4amip_%s%s.1.0dg.fix.nc" % (hind_period, target_months)
        hind_shift, lons_hind_shift = shiftgrid(180., hind, lons, start=False)
        cn.create_netcdf(hind_shift, lons_hind_shift, lats, fileout=hind_file_out, 
            ntime=20, varlongname='Accum Precip', varunits='mm', 
            vartimeunits='years since 1989-05-01 00:00:00', fillvalue=-999., varname='pcp')

        obs_file_out = "cmap.%s-%s-1.0dg.fix.nc" % (hind_period, target_months)
        obs_shift, lons_obs_shift = shiftgrid(180., obs, lons, start=False)
        cn.create_netcdf(obs_shift, lons_obs_shift, lats, fileout=obs_file_out, 
            ntime=20, varlongname='Accum Precip', varunits='mm', 
            vartimeunits='years since 1989-05-01 00:00:00', fillvalue=-999., varname='pcp')

        print fcst_file_out
コード例 #6
0
    for k in range(int(ntime)):
        aux[k, :, :] = np.sum(var[k : 3 + k, :, :], axis=0)

    print np.min(aux)
    print np.max(aux)

    aux = np.where(aux >= 9.96920996838687 ** 36, -999, aux)

    a = aux.reshape(nyear, nmon, nlat, nlon)  # 1989: JFM, 1990: JFM...

    # ESCREVE NETCDF
    for k in range(int(nmon)):
        print tri[k]
        fname = "/Users/Hulk/obs_pcp/cru/" + output_name[i] + "{0}.nc".format(tri[k])
        cn.create_netcdf(
            a[:, k, :, :],
            lat,
            lon,
            fileout=fname,
            ntime=int(clim_year),
            varname="pre",
            vartimeunits="years since 1971-01-01 00:00",
            varunits="mm",
            fillvalue=-999,
            varlongname="Preciptation",
        )

    # cdo Versão 3
    # cdo genbil,pcp-daily-ec4amip51_2015AMJ.ctl.nc cmap.precip.mon.mean.1981-2010.JFM.2.5dg.nc weights.nc
    # cdo remap,pcp-daily-ec4amip51_2015AMJ.ctl.nc,weights.nc cmap.precip.mon.mean.1981-2010.JFM.2.5dg.nc cmap.precip.mon.mean.1981-2010.JFM.T42.nc
myfile = "/Users/Hulk/obs_pcp/cmap/cmap.precip.mon.mean.standard.2015.FMA.accum.t42.nc"

nc_file = pupynere.NetCDFFile(myfile, 'r')
print nc_file.variables
var = nc_file.variables['PREC'][:].copy()  # Mude aqui
print var.shape 
lon = nc_file.variables['LONGITUDE'][:]      # Mude aqui
lat = nc_file.variables['LATITUDE'][:]       # Mude aqui
nc_file.close()

var[30, 114] = 460.15   # norte ce
var[29, 114] = 302.99   # sul ce

fname = '/Users/Hulk/obs_pcp/cmap/cmap.merge.funceme.precip.mon.mean.standard.2015.FMA.accum.t42.nc'
cn.create_netcdf(var, lat, lon, fileout=fname, ntime=1, varname='precip', vartimeunits='years since 2015-02-01 00:00', varunits='mm', fillvalue=np.nan)

# 1989 - 2008
# obs_funceme_fma_accum_norte = [ 635.98, 391.46, 536.61, 443.23, 260.96, 651.89, 685.73, 763.43, 427.6, 292.96, 487.32, 614.0, 495.22, 470.58, 722.79, 482.24, 350.25, 553.88, 545.35, 653.38 ]

# 1989 - 2008
# obs_funceme_fma_accum_sul = [ 646.32, 355.03, 400.28, 422.76, 223.76, 447.75, 518.49, 514.79, 464.84, 245.4, 378.17, 473.52, 331.32, 340.8, 461.63, 449.94, 324.29, 473.72, 494.44, 677.09 ]

# for i in range(20):
#     print var[i, 30, 114], '=>', obs_funceme_fma_accum_norte[i]
#     var[i, 30, 114] = obs_funceme_fma_accum_norte[i]

# for i in range(20):
#     print var[i, 29, 114], '=>', obs_funceme_fma_accum_sul[i]
#     var[i, 29, 114] = obs_funceme_fma_accum_sul[i]
コード例 #8
0
        elif k in ond:
            aux[k, :, :] = np.nanmean(var[k:3+k, :, :], axis=0) * 92

        elif k in ndj:
            aux[k, :, :] = np.nanmean(var[k:3+k, :, :], axis=0) * 92

        elif k in djf:
            aux[k, :, :] = np.nanmean(var[k:3+k, :, :], axis=0) * 90

    # aux = np.where(aux == np.nan, -999, aux)
    aux[np.isnan(aux)] = -999.

    # a = aux.reshape(nmon, nyear, nlat, nlon) # 1989: JFM, FMA, MAM...
    a = aux.reshape(nyear, nmon, nlat, nlon)  # 1989: JFM, 1990: JFM...

    # ESCREVE NETCDF
    for k in range(int(nmon)):
        fname = '/home/marcelo/Downloads/{0}{1}.nc'.format(output_name, tri[k])
        print fname
        cn.create_netcdf(a[:, k, :, :], lat, lon,
                         fileout=fname,
                         ntime=int(clim_year),
                         varname='precip',
                         vartimeunits='years since 1981-01-01 00:00',
                         varunits='mm', fillvalue=-999.,
                         varlongname='Accum Mon Precip')

    # cdo Versão 3
    # cdo genbil,pcp-daily-ec4amip51_2015AMJ.ctl.nc cmap.precip.mon.mean.1981-2010.JFM.2.5dg.nc weights.nc
    # cdo remap,pcp-daily-ec4amip51_2015AMJ.ctl.nc,weights.nc cmap.precip.mon.mean.1981-2010.JFM.2.5dg.nc cmap.precip.mon.mean.1981-2010.JFM.T42.nc
コード例 #9
0
ファイル: map_tercis.py プロジェクト: marcelorodriguesss/FCST
# tercil mais provável 2011-2016
for i, y in enumerate(xrange(2011, 2017)):

    below, normal, above, f_signal, f_std, o_pad, fcst_sig_anom = \
        cs.compute_probability(pcp[30 + i, :, :], pcp[0:30, :, :],
                               obs[0:30, :, :])

    if not os.path.exists('figs_expsolar/map_tercis'):
        os.makedirs('figs_expsolar/map_tercis')

    file_out = 'figs_expsolar/map_tercis' \
               '/prob_echam46_issue_{0}{1}_target_{2}{3}_{4}.nc' \
               .format("JAN", y, "FMA", y, "8110")

    cn.create_netcdf_probs(below, normal, above, nla, nlo, fileout=file_out)

    figout = 'figs_expsolar/map_tercis' \
             '/bra_precip_persistida_{1}_{2}-{3}_{4}_{0}' \
             '_echam46_1dg_cmap_tercilmaisprovavel.png' \
             .format("JAN", "8110", y, "FMA", y)

    figtitle = "ECHAM4.6 - {0}/{1} - {2}/{3}\nPROB PREC (%) ({4})" \
               .format("JAN", y, "FMA", y, "8110")

    pm.maptercis(file_out, figtitle, figout)

    os.remove(file_out)

# tercil mais provável 2011-2016 experimento
for i, y in enumerate(xrange(2011, 2017)):
コード例 #10
0
# -*- coding: utf-8 -*-

from pupynere import NetCDFFile
from PyFuncemeClimateTools import CreateNetCDF

f = NetCDFFile(
    "/home/rodrigues/AmbientePython27/lib/python2.7/site-packages/PyFuncemeClimateTools/examples/pcp-daily-total-ec4amip_8908JFM.nc",
    "r",
)

myvar = f.variables["pcp"][:]
lons = f.variables["longitude"][:]
lats = f.variables["latitude"][:]

f.close()

CreateNetCDF.create_netcdf(myvar, lons, lats, varname="precip", varunits="mm", ntime=20)
コード例 #11
0
__date__ = "04/12/2015"

from PyFuncemeClimateTools import PostRSM97 as PostModels
from PyFuncemeClimateTools import CreateNetCDF as cn
from netCDF4 import Dataset
import numpy as np

np.set_printoptions(precision=3)

pcp, seaccum, monaccum, seamean, monmean, lat, lon = PostModels.Daily(target_months = range(1, 4), model = 'ECHAM46')

print pcp.shape

exit()

cn.create_netcdf(pcp[0,0,:,:,:], lat, lon, fileout='plev.1981JFM.accum.PER11.t1.nc', varname='pcp', varlongname='Longname Description', varunits='mm', ntime=31, vartimeunits='months since 1900-01-01 00:00', fillvalue=np.nan, ncauthor='', nccomments='', nctitle='', ncsource='', ncdocumentation='', ncreferences='', nchistory='')

cn.create_netcdf(pcp[1,0,:,:,:], lat, lon, fileout='plev.1981JFM.accum.PER11.t2.nc', varname='pcp', varlongname='Longname Description', varunits='mm', ntime=31, vartimeunits='months since 1900-01-01 00:00', fillvalue=np.nan, ncauthor='', nccomments='', nctitle='', ncsource='', ncdocumentation='', ncreferences='', nchistory='')

cn.create_netcdf(pcp[2,0,:,:,:], lat, lon, fileout='plev.1981JFM.accum.PER11.t3.nc', varname='pcp', varlongname='Longname Description', varunits='mm', ntime=31, vartimeunits='months since 1900-01-01 00:00', fillvalue=np.nan, ncauthor='', nccomments='', nctitle='', ncsource='', ncdocumentation='', ncreferences='', nchistory='')

exit()

# media dos membros
avemembs = np.nanmean(pcp, axis=1)
print avemembs.shape

# soma os dias
sumdays = np.nansum(avemembs, axis=1)
print sumdays.shape
コード例 #12
0
    elif k in leep_years12:
        aux[k, :, :] = np.nanmean(var[k:3+k, :, :], axis=0) * 91

    elif k in leep_years13:
        aux[k, :, :] = np.nanmean(var[k:3+k, :, :], axis=0) * 92

    elif k in leep_years14:
        aux[k, :, :] = np.nanmean(var[k:3+k, :, :], axis=0) * 92

    elif k in leep_years15:
        aux[k, :, :] = np.nanmean(var[k:3+k, :, :], axis=0) * 90

    else:
        print "Saindo..."
        exit()

print np.nanmin(aux)
print np.nanmax(aux)

aux = np.where(np.isnan(aux), -999., aux)

# a = aux.reshape(nmon,nyear,nlat,nlon) # 1989: JFM, FMA, MAM...
a = aux.reshape(nyear, nmon, nlat, nlon) # 1989: JFM, 1990: JFM...

# ESCREVE NETCDF
for k in range(int(nmon)):
    print k
    fname = "cmap.precip.mon.acc.standard.2.5g.1982-2011.{0}.nc".format(tri[k])
    cn.create_netcdf(a[:, k, :, :], lats, lons, fileout=fname, ntime=int(nyear), varname='prec',
                     vartimeunits='years since 1982-01-01 00:00', varunits='mm', fillvalue=-999.)
コード例 #13
0
        ###   Simples conferencia dos dados...   ###
        print "fcst:", fcst.shape, "type:", type(fcst), "min:", np.min(fcst), "max:", np.max(fcst)
        print "hind:", hind.shape, "type:", type(hind), "min:", np.min(hind), "max:", np.max(hind)
        if obs_base == "inmet" or obs_base == "chirps" or obs_base == "cru":
            print "obs:", obs.shape, "type:", type(obs), "min:", np.min(obs), "max:", np.max(obs)
        elif obs_base == "funceme":
            print "obs funceme:", mean_ce_obs.shape, "type:", type(mean_ce_obs), "min:", np.min(
                mean_ce_obs
            ), "max:", np.max(mean_ce_obs)

        ###   Salvando arquivos interpolados para simples conferencia   ###
        # fcst
        myfileout = "{4}/pcp-seasonacc-rsm97-hind8110-{0}{1}_{2}{3}.1dg.nc".format(
            fcst_month, fcst_year, target_year, target_months, outdir
        )
        cn.create_netcdf(fcst, fcst_lats, fcst_lons, fileout=myfileout, varname="pcp", varlongname="Precipitation")
        # hind
        myfileout = "{3}/pcp-seasonacc-rsm97-hind8110-{0}-{1}-{2}.1dg.nc".format(
            fcst_month, hind_period_name2, target_months, outdir
        )
        cn.create_netcdf(
            hind, fcst_lats, fcst_lons, fileout=myfileout, varname="pcp", varlongname="Precipitation", ntime=30
        )

        # obs
        if obs_base == "inmet" or obs_base == "chirps" or obs_base == "cru":
            myfileout = "{3}/obs_data_{0}_{1}_{2}.1dg.nc".format(obs_base, obs_hind_period, target_months, outdir)
            cn.create_netcdf(
                obs, fcst_lats, fcst_lons, fileout=myfileout, varname="pcp", varlongname="Precipitation", ntime=30
            )